Converters and Visualizer
About the Converter API
The Converter API is a new feature in the v0.12.x release of SpectraFit
with major focus on:
- Data Validation
- Settings Management
In general, input and data files are converted to the internal data format, which are dictionaries for the input data and pandas dataframes for the data files. The Converter API is realized by using the ABC
-class and the @abstractmethod
decorator, while the File API is using the pydantic library.
Meta Data Converter Class¶
Abstract base class for the converter plugins.
Converter
¶
Bases: ABC
Abstract base class for the converter plugin.
The abstract base class is used to define the interface for the converter plugins:
- get_args: Get the arguments from the command line.
- convert: Convert the input file to the output file.
- call: Call the converter plugin.
Currently used for:
- Convertion of the input file.
- Convertion of the output file.
Source code in spectrafit/plugins/converter.py
class Converter(ABC):
"""Abstract base class for the converter plugin.
The abstract base class is used to define the interface for the converter plugins:
- get_args: Get the arguments from the command line.
- convert: Convert the input file to the output file.
- __call__: Call the converter plugin.
Currently used for:
- Convertion of the input file.
- Convertion of the output file.
"""
@abstractmethod
def get_args(self) -> Dict[str, Any]:
"""Get the arguments from the command line.
Returns:
Dict[str, Any]: Return the input file arguments as a dictionary without
additional information beyond the command line arguments.
Raises:
ValueError: If the output file format is not supported.
"""
@staticmethod
@abstractmethod
def convert(infile: Path, file_format: str) -> MutableMapping[str, Any]:
"""Convert the input file to the target file format.
It is an abstract method and must be implemented in the derived class.
Args:
infile (Path): Input file as a path object.
file_format (str): Target file format.
Returns:
MutableMapping[str, Any]: Converted file as a dictionary.
"""
@abstractmethod
def save(self, data: Any, fname: Path, export_format: str) -> None:
"""Save the data to the target file format.
Args:
data (Any): Data to save.
fname (Path): Filename of the target file.
export_format (str): Target file format.
"""
@abstractmethod
def __call__(self) -> None:
"""Call the converter plugin."""
__call__()
abstractmethod
¶
Call the converter plugin.
Source code in spectrafit/plugins/converter.py
@abstractmethod
def __call__(self) -> None:
"""Call the converter plugin."""
convert(infile, file_format)
staticmethod
abstractmethod
¶
Convert the input file to the target file format.
It is an abstract method and must be implemented in the derived class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
infile | Path | Input file as a path object. | required |
file_format | str | Target file format. | required |
Returns:
Type | Description |
---|---|
MutableMapping[str, Any] | MutableMapping[str, Any]: Converted file as a dictionary. |
Source code in spectrafit/plugins/converter.py
@staticmethod
@abstractmethod
def convert(infile: Path, file_format: str) -> MutableMapping[str, Any]:
"""Convert the input file to the target file format.
It is an abstract method and must be implemented in the derived class.
Args:
infile (Path): Input file as a path object.
file_format (str): Target file format.
Returns:
MutableMapping[str, Any]: Converted file as a dictionary.
"""
get_args()
abstractmethod
¶
Get the arguments from the command line.
Returns:
Type | Description |
---|---|
Dict[str, Any] | Dict[str, Any]: Return the input file arguments as a dictionary without additional information beyond the command line arguments. |
Raises:
Type | Description |
---|---|
ValueError | If the output file format is not supported. |
Source code in spectrafit/plugins/converter.py
@abstractmethod
def get_args(self) -> Dict[str, Any]:
"""Get the arguments from the command line.
Returns:
Dict[str, Any]: Return the input file arguments as a dictionary without
additional information beyond the command line arguments.
Raises:
ValueError: If the output file format is not supported.
"""
save(data, fname, export_format)
abstractmethod
¶
Save the data to the target file format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data | Any | Data to save. | required |
fname | Path | Filename of the target file. | required |
export_format | str | Target file format. | required |
Source code in spectrafit/plugins/converter.py
@abstractmethod
def save(self, data: Any, fname: Path, export_format: str) -> None:
"""Save the data to the target file format.
Args:
data (Any): Data to save.
fname (Path): Filename of the target file.
export_format (str): Target file format.
"""
Input and Output File Converter for object-oriented formats¶
Convert the input and output files to the preferred file format.
FileConverter
¶
Bases: Converter
Convert the input and output file to the preferred file format.
Supported file formats
Currently supported file formats:
-[x] JSON -[x] YAML (YML) -[x] TOML (LOCK for the lock file)
Source code in spectrafit/plugins/file_converter.py
class FileConverter(Converter):
"""Convert the input and output file to the preferred file format.
!!! info "Supported file formats"
Currently supported file formats:
-[x] JSON
-[x] YAML (YML)
-[x] TOML (LOCK for the lock file)
"""
def get_args(self) -> Dict[str, Any]:
"""Get the arguments from the command line.
Returns:
Dict[str, Any]: Return the input file arguments as a dictionary without
additional information beyond the command line arguments.
"""
parser = argparse.ArgumentParser(
description="Converter for 'SpectraFit' input and output files."
)
parser.add_argument(
"infile",
type=Path,
help="Filename of the 'SpectraFit' input or output file.",
)
parser.add_argument(
"-f",
"--file-format",
help="File format for the conversion.",
type=str,
choices=choices,
)
parser.add_argument(
"-e",
"--export-format",
help="File format for the export.",
type=str,
default="json",
choices=choices,
)
return vars(parser.parse_args())
@staticmethod
def convert(infile: Path, file_format: str) -> MutableMapping[str, Any]:
"""Convert the input file to the output file.
Args:
infile (Path): The input file as a path object.
file_format (str): The output file format.
Raises:
ValueError: If the input file format is not supported.
Returns:
MutableMapping[str, Any] : The converted file as a dictionary.
"""
if file_format not in choices:
raise ValueError(f"The input file format '{file_format}' is not supported.")
return read_input_file(infile)
def save(self, data: Any, fname: Path, export_format: str) -> None:
"""Save the converted file.
Raises:
ValueError: If the input file format is identical with the output format.
ValueError: If the output file format is not supported.
Args:
data (Any): The converted file as a dictionary.
fname (Path): The input file as a path object.
export_format (str): The output file format.
"""
if fname.suffix[1:] == export_format:
raise ValueError(
f"The input file suffix '{fname.suffix[1:]}' is similar to the"
f" output file format '{export_format}'."
"Please use a different output file suffix."
)
if export_format not in choices:
raise ValueError(
f"The output file format '{export_format}' is not supported."
)
if export_format == "json":
with open(
fname.with_suffix(f".{export_format}"), "w", encoding="utf-8"
) as f:
json.dump(data, f, indent=4)
elif export_format in {"yaml", "yml"}:
with open(
fname.with_suffix(f".{export_format}"), "w", encoding="utf-8"
) as f:
yaml.dump(data, f, default_flow_style=False)
elif export_format in {"toml", "lock"}:
with open(
fname.with_suffix(f".{export_format}"),
"wb+",
) as f:
tomli_w.dump(dict(**data), f)
def __call__(self) -> None:
"""Run the converter via cmd commands."""
args = self.get_args()
self.save(
data=self.convert(infile=args["infile"], file_format=args["file_format"]),
fname=args["infile"],
export_format=args["export_format"],
)
__call__()
¶
Run the converter via cmd commands.
Source code in spectrafit/plugins/file_converter.py
def __call__(self) -> None:
"""Run the converter via cmd commands."""
args = self.get_args()
self.save(
data=self.convert(infile=args["infile"], file_format=args["file_format"]),
fname=args["infile"],
export_format=args["export_format"],
)
convert(infile, file_format)
staticmethod
¶
Convert the input file to the output file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
infile | Path | The input file as a path object. | required |
file_format | str | The output file format. | required |
Raises:
Type | Description |
---|---|
ValueError | If the input file format is not supported. |
Returns:
Type | Description |
---|---|
MutableMapping[str, Any] | MutableMapping[str, Any] : The converted file as a dictionary. |
Source code in spectrafit/plugins/file_converter.py
@staticmethod
def convert(infile: Path, file_format: str) -> MutableMapping[str, Any]:
"""Convert the input file to the output file.
Args:
infile (Path): The input file as a path object.
file_format (str): The output file format.
Raises:
ValueError: If the input file format is not supported.
Returns:
MutableMapping[str, Any] : The converted file as a dictionary.
"""
if file_format not in choices:
raise ValueError(f"The input file format '{file_format}' is not supported.")
return read_input_file(infile)
get_args()
¶
Get the arguments from the command line.
Returns:
Type | Description |
---|---|
Dict[str, Any] | Dict[str, Any]: Return the input file arguments as a dictionary without additional information beyond the command line arguments. |
Source code in spectrafit/plugins/file_converter.py
def get_args(self) -> Dict[str, Any]:
"""Get the arguments from the command line.
Returns:
Dict[str, Any]: Return the input file arguments as a dictionary without
additional information beyond the command line arguments.
"""
parser = argparse.ArgumentParser(
description="Converter for 'SpectraFit' input and output files."
)
parser.add_argument(
"infile",
type=Path,
help="Filename of the 'SpectraFit' input or output file.",
)
parser.add_argument(
"-f",
"--file-format",
help="File format for the conversion.",
type=str,
choices=choices,
)
parser.add_argument(
"-e",
"--export-format",
help="File format for the export.",
type=str,
default="json",
choices=choices,
)
return vars(parser.parse_args())
save(data, fname, export_format)
¶
Save the converted file.
Raises:
Type | Description |
---|---|
ValueError | If the input file format is identical with the output format. |
ValueError | If the output file format is not supported. |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data | Any | The converted file as a dictionary. | required |
fname | Path | The input file as a path object. | required |
export_format | str | The output file format. | required |
Source code in spectrafit/plugins/file_converter.py
def save(self, data: Any, fname: Path, export_format: str) -> None:
"""Save the converted file.
Raises:
ValueError: If the input file format is identical with the output format.
ValueError: If the output file format is not supported.
Args:
data (Any): The converted file as a dictionary.
fname (Path): The input file as a path object.
export_format (str): The output file format.
"""
if fname.suffix[1:] == export_format:
raise ValueError(
f"The input file suffix '{fname.suffix[1:]}' is similar to the"
f" output file format '{export_format}'."
"Please use a different output file suffix."
)
if export_format not in choices:
raise ValueError(
f"The output file format '{export_format}' is not supported."
)
if export_format == "json":
with open(
fname.with_suffix(f".{export_format}"), "w", encoding="utf-8"
) as f:
json.dump(data, f, indent=4)
elif export_format in {"yaml", "yml"}:
with open(
fname.with_suffix(f".{export_format}"), "w", encoding="utf-8"
) as f:
yaml.dump(data, f, default_flow_style=False)
elif export_format in {"toml", "lock"}:
with open(
fname.with_suffix(f".{export_format}"),
"wb+",
) as f:
tomli_w.dump(dict(**data), f)
command_line_runner()
¶
Run the converter from the command line.
Source code in spectrafit/plugins/file_converter.py
def command_line_runner() -> None:
"""Run the converter from the command line."""
FileConverter()()
Data Converter for rational data formats like CSV, Excel, etc.¶
Transform the input data to a CSV file.
DataConverter
¶
Bases: Converter
Convert the data files to a CSV file.
Supported file formats
Currently supported file formats:
-[x] ATHENA -[x] TXT -[ ] more to come
DataConverter
class can be also used in the Jupyter notebook.
Source code in spectrafit/plugins/data_converter.py
class DataConverter(Converter):
"""Convert the data files to a CSV file.
!!! info "Supported file formats"
Currently supported file formats:
-[x] ATHENA
-[x] TXT
-[ ] more to come
`DataConverter` class can be also used in the Jupyter notebook.
"""
def get_args(self) -> Dict[str, Any]:
"""Get the arguments from the command line.
Returns:
Dict[str, Any]: Return the input file arguments as a dictionary without
additional information beyond the command line arguments.
"""
parser = argparse.ArgumentParser(
description="Converter for 'SpectraFit' from data files to CSV files."
)
parser.add_argument(
"infile",
type=Path,
help="Filename of the data file to convert.",
)
parser.add_argument(
"-f",
"--file-format",
help="File format for the conversion.",
type=str,
choices=choices,
)
parser.add_argument(
"-e",
"--export-format",
help="File format for the export.",
type=str,
default="csv",
choices=choices_export,
)
return vars(parser.parse_args())
@staticmethod
def convert(infile: Path, file_format: str) -> pd.DataFrame:
"""Convert the input file to the target file format.
Args:
infile (Path): Input file as a path object.
file_format (str): Target file format.
Raises:
ValueError: If the file format is not supported.
Returns:
pd.DataFrame: The converted data as a pandas DataFrame.
"""
if file_format.upper() not in choices:
raise ValueError(f"File format '{file_format}' is not supported.")
if callable(DataFormats.__dict__[file_format].names):
names = DataFormats.__dict__[file_format].names(infile)
else:
names = DataFormats.__dict__[file_format].names
DataFormats.__dict__[file_format].names = names
return pd.read_csv(
infile, **DataFormats.__dict__[file_format].dict(exclude={"file_suffixes"})
)
def save(self, data: Any, fname: Path, export_format: str) -> None:
"""Save the converted data to a CSV file.
Raises:
ValueError: If the export format is not supported.
Args:
data (Any): The converted data, which is a pandas DataFrame.
fname (Path): The file name of the data file.
export_format (str): The file format of the exported file.
"""
if export_format.lower() not in choices_export:
raise ValueError(f"Export format '{export_format}' is not supported.")
data.to_csv(fname.with_suffix(f".{export_format}"), index=False)
def __call__(self) -> None:
"""Run the converter."""
args = self.get_args()
self.save(
data=self.convert(
args["infile"],
args["file_format"],
),
fname=args["infile"],
export_format=args["export_format"],
)
__call__()
¶
Run the converter.
Source code in spectrafit/plugins/data_converter.py
def __call__(self) -> None:
"""Run the converter."""
args = self.get_args()
self.save(
data=self.convert(
args["infile"],
args["file_format"],
),
fname=args["infile"],
export_format=args["export_format"],
)
convert(infile, file_format)
staticmethod
¶
Convert the input file to the target file format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
infile | Path | Input file as a path object. | required |
file_format | str | Target file format. | required |
Raises:
Type | Description |
---|---|
ValueError | If the file format is not supported. |
Returns:
Type | Description |
---|---|
pd.DataFrame | pd.DataFrame: The converted data as a pandas DataFrame. |
Source code in spectrafit/plugins/data_converter.py
@staticmethod
def convert(infile: Path, file_format: str) -> pd.DataFrame:
"""Convert the input file to the target file format.
Args:
infile (Path): Input file as a path object.
file_format (str): Target file format.
Raises:
ValueError: If the file format is not supported.
Returns:
pd.DataFrame: The converted data as a pandas DataFrame.
"""
if file_format.upper() not in choices:
raise ValueError(f"File format '{file_format}' is not supported.")
if callable(DataFormats.__dict__[file_format].names):
names = DataFormats.__dict__[file_format].names(infile)
else:
names = DataFormats.__dict__[file_format].names
DataFormats.__dict__[file_format].names = names
return pd.read_csv(
infile, **DataFormats.__dict__[file_format].dict(exclude={"file_suffixes"})
)
get_args()
¶
Get the arguments from the command line.
Returns:
Type | Description |
---|---|
Dict[str, Any] | Dict[str, Any]: Return the input file arguments as a dictionary without additional information beyond the command line arguments. |
Source code in spectrafit/plugins/data_converter.py
def get_args(self) -> Dict[str, Any]:
"""Get the arguments from the command line.
Returns:
Dict[str, Any]: Return the input file arguments as a dictionary without
additional information beyond the command line arguments.
"""
parser = argparse.ArgumentParser(
description="Converter for 'SpectraFit' from data files to CSV files."
)
parser.add_argument(
"infile",
type=Path,
help="Filename of the data file to convert.",
)
parser.add_argument(
"-f",
"--file-format",
help="File format for the conversion.",
type=str,
choices=choices,
)
parser.add_argument(
"-e",
"--export-format",
help="File format for the export.",
type=str,
default="csv",
choices=choices_export,
)
return vars(parser.parse_args())
save(data, fname, export_format)
¶
Save the converted data to a CSV file.
Raises:
Type | Description |
---|---|
ValueError | If the export format is not supported. |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data | Any | The converted data, which is a pandas DataFrame. | required |
fname | Path | The file name of the data file. | required |
export_format | str | The file format of the exported file. | required |
Source code in spectrafit/plugins/data_converter.py
def save(self, data: Any, fname: Path, export_format: str) -> None:
"""Save the converted data to a CSV file.
Raises:
ValueError: If the export format is not supported.
Args:
data (Any): The converted data, which is a pandas DataFrame.
fname (Path): The file name of the data file.
export_format (str): The file format of the exported file.
"""
if export_format.lower() not in choices_export:
raise ValueError(f"Export format '{export_format}' is not supported.")
data.to_csv(fname.with_suffix(f".{export_format}"), index=False)
DataFormats
dataclass
¶
Data formats.
Source code in spectrafit/plugins/data_converter.py
@dataclass(frozen=True)
class DataFormats:
"""Data formats."""
ATHENA = athena_format
TXT = txt_format
command_line_runner()
¶
Run the converter from the command line.
Source code in spectrafit/plugins/data_converter.py
def command_line_runner() -> None:
"""Run the converter from the command line."""
DataConverter()()
get_athena_column(fname, comment='#')
¶
Get the header of the file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fname | Path | The file name of the data file. | required |
comment | str | The comment marker. Defaults to "#". | '#' |
Returns:
Type | Description |
---|---|
Optional[List[str]] | Optional[List[str]]: The column names of the data file as a list. |
Source code in spectrafit/plugins/data_converter.py
def get_athena_column(fname: Path, comment: str = "#") -> Optional[List[str]]:
"""Get the header of the file.
Args:
fname (Path): The file name of the data file.
comment (str, optional): The comment marker. Defaults to "#".
Returns:
Optional[List[str]]: The column names of the data file as a list.
"""
with open(fname, encoding="utf-8") as f:
data = f.read()
lines = data.splitlines()
return next(
(
lines[i - 1].split(comment)[-1].split()
for i, line in enumerate(lines)
if re.match(r"^\s*\d", line)
),
None,
)
Pkl Converter for pickle files¶
Transform the raw pkl data into a CSV files.
ExportData
¶
Export the data to a file.
General information
The data is exported to a file. The file format is determined by the file extension of the output file. The supported file formats are:
-[x] npy -[x] npz -[x] pkl -[x] pkl.gz
Classical file formats like CSV
, JSON
, TOML
, etc. are not supported. In case of CSV
, the conversion from unstructured data to a structured format is not trivial. In case of JSON
and TOML
, the data is not the conversion from numpy arrays to lists is very costly. Therefore, the data is exported to a pickly file as the preferred format.
About NumPy
The data is exported to a NumPy file can cause some challenge for the loading of the data. The data is exported as a dictionary with numpy as numpy arrays. The data can be loaded with the following code:
import numpy as np
data = np.load("data.npy", allow_pickle=True).item()
Source code in spectrafit/plugins/pkl_converter.py
class ExportData:
"""Export the data to a file.
!!! info "General information"
The data is exported to a file. The file format is determined by the file
extension of the output file. The supported file formats are:
-[x] npy
-[x] npz
-[x] pkl
-[x] pkl.gz
Classical file formats like `CSV`, `JSON`, `TOML`, etc. are not supported.
In case of `CSV`, the conversion from unstructured data to a structured
format is not trivial. In case of `JSON` and `TOML`, the data is not
the conversion from numpy arrays to lists is very costly. Therefore, the
data is exported to a pickly file as the preferred format.
!!! warning "About NumPy"
The data is exported to a NumPy file can cause some challenge for the
loading of the data. The data is exported as a dictionary with numpy
as numpy arrays. The data can be loaded with the following code:
```python
import numpy as np
data = np.load("data.npy", allow_pickle=True).item()
```
"""
def __init__(self, data: Dict[str, Any], fname: Path, export_format: str) -> None:
"""Export the data to a file.
Args:
data (Dict[str, Any]): The data to export.
fname (Path): The filename of the output file.
export_format (str): The file format of the output file.
"""
self.data = data
self.fname = fname.with_suffix(f".{export_format}")
self.export_format = export_format
def __call__(self) -> None:
"""Export the data to a file."""
if self.export_format in {"npy", "npz"}:
self.to_numpy()
elif self.export_format in {"pkl", pkl_gz}:
self.to_pickle()
def to_numpy(self) -> None:
"""Export the data to a numpy file."""
_data: Any = self.data
if self.export_format.lower() == "npy":
np.save(self.fname, _data)
elif self.export_format.lower() == "npz":
np.savez(self.fname, data=_data)
def to_pickle(self) -> None:
"""Export the data to a pickle file."""
if self.export_format.lower() == "pkl":
with open(self.fname, "wb") as f:
pickle.dump(self.data, f)
elif self.export_format.lower() == pkl_gz:
with gzip.open(self.fname, "wb") as f:
pickle.dump(self.data, f)
@staticmethod
def numpy2list(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Convert the arrays of list dictionaries to a list of dictionaries with list.
Args:
data (List[Dict[str, Any]]): The data to convert.
Returns:
List[Dict[str, Any]]: The converted data.
"""
return [
{k: v.tolist() for k, v in d.items() if isinstance(v, np.ndarray)}
for d in data
]
__call__()
¶
Export the data to a file.
Source code in spectrafit/plugins/pkl_converter.py
def __call__(self) -> None:
"""Export the data to a file."""
if self.export_format in {"npy", "npz"}:
self.to_numpy()
elif self.export_format in {"pkl", pkl_gz}:
self.to_pickle()
__init__(data, fname, export_format)
¶
Export the data to a file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data | Dict[str, Any] | The data to export. | required |
fname | Path | The filename of the output file. | required |
export_format | str | The file format of the output file. | required |
Source code in spectrafit/plugins/pkl_converter.py
def __init__(self, data: Dict[str, Any], fname: Path, export_format: str) -> None:
"""Export the data to a file.
Args:
data (Dict[str, Any]): The data to export.
fname (Path): The filename of the output file.
export_format (str): The file format of the output file.
"""
self.data = data
self.fname = fname.with_suffix(f".{export_format}")
self.export_format = export_format
numpy2list(data)
staticmethod
¶
Convert the arrays of list dictionaries to a list of dictionaries with list.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data | List[Dict[str, Any]] | The data to convert. | required |
Returns:
Type | Description |
---|---|
List[Dict[str, Any]] | List[Dict[str, Any]]: The converted data. |
Source code in spectrafit/plugins/pkl_converter.py
@staticmethod
def numpy2list(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Convert the arrays of list dictionaries to a list of dictionaries with list.
Args:
data (List[Dict[str, Any]]): The data to convert.
Returns:
List[Dict[str, Any]]: The converted data.
"""
return [
{k: v.tolist() for k, v in d.items() if isinstance(v, np.ndarray)}
for d in data
]
to_numpy()
¶
Export the data to a numpy file.
Source code in spectrafit/plugins/pkl_converter.py
def to_numpy(self) -> None:
"""Export the data to a numpy file."""
_data: Any = self.data
if self.export_format.lower() == "npy":
np.save(self.fname, _data)
elif self.export_format.lower() == "npz":
np.savez(self.fname, data=_data)
to_pickle()
¶
Export the data to a pickle file.
Source code in spectrafit/plugins/pkl_converter.py
def to_pickle(self) -> None:
"""Export the data to a pickle file."""
if self.export_format.lower() == "pkl":
with open(self.fname, "wb") as f:
pickle.dump(self.data, f)
elif self.export_format.lower() == pkl_gz:
with gzip.open(self.fname, "wb") as f:
pickle.dump(self.data, f)
PklConverter
¶
Bases: Converter
Convert pkl data to a CSV files.
General information
The pkl data is converted to a CSV file. The CSV file is saved in the same directory as the input file. The name of the CSV file is the same as the input file with the suffix .csv
and prefixed with the name of the 'major' keys in the pkl file. Furthermore, a graph of the data is optionally saved as a PDF file to have a visual representation of the data structure.
Supported file formats
Currently supported file formats:
-[x] pkl -[x] pkl.gz -[x] ...
Source code in spectrafit/plugins/pkl_converter.py
class PklConverter(Converter):
"""Convert pkl data to a CSV files.
!!! info "General information"
The pkl data is converted to a CSV file. The CSV file is saved in the same
directory as the input file. The name of the CSV file is the same as the
input file with the suffix `.csv` and prefixed with the name of the
'major' keys in the pkl file. Furthermore, a graph of the data is optionally
saved as a PDF file to have a visual representation of the data structure.
!!! info "Supported file formats"
Currently supported file formats:
-[x] pkl
-[x] pkl.gz
-[x] ...
"""
def get_args(self) -> Dict[str, Any]:
"""Get the arguments from the command line.
Returns:
Dict[str, Any]: Return the input file arguments as a dictionary without
additional information beyond the command line arguments.
"""
parser = argparse.ArgumentParser(
description="Converter for 'SpectraFit' from pkl files to CSV files."
)
parser.add_argument(
"infile",
type=Path,
help="Filename of the pkl file to convert.",
)
parser.add_argument(
"-f",
"--file-format",
help="File format for the optional encoding of the pickle file."
" Default is 'latin1'.",
type=str,
default="latin1",
choices=choices_fformat,
)
parser.add_argument(
"-e",
"--export-format",
help="File format for export of the output file. Default is 'pkl'.",
type=str,
default="pkl",
choices=choices_export,
)
return vars(parser.parse_args())
@staticmethod
def convert(infile: Path, file_format: str) -> Dict[str, Any]:
"""Convert the input file to the output file.
Args:
infile (Path): The input file of the as a path object.
file_format (str): The output file format.
Returns:
Dict[str, Any]: The data as a dictionary, which can be a nested dictionary
"""
def _convert(
data_values: Dict[str, Any], _key: Optional[List[str]] = None
) -> List[Dict[str, Any]]:
"""Convert the data to a list of dictionaries.
The new key is the old key plus all the subkeys. The new value is the
value of the subkey if the value is an instance of an array.
For avoiding `pylint` errors, the `_key` argument is set to `None` by
default and is set to an empty list if it is `None`. This is done to
avoid the `pylint` error `dangerous-default-value`. The `_key` argument
is used to keep track of the keys of the nested dictionary. Furthermore,
the `_key` argument is used to create the new key for the new dictionary.
Finally, the new dictionary is appended to the list of dictionaries.
Args:
data_values (Dict[str, Any]): The data as a dictionary.
Returns:
List[Dict[str, Any]]: The data as a list of dictionaries.
"""
data_list = []
if _key is None:
_key = []
for key, value in data_values.items():
if isinstance(value, dict):
_key.append(str(key))
data_list.extend(_convert(value, _key))
_key.pop()
elif isinstance(value, np.ndarray):
data_list.append({"_".join(_key + [key]): value})
return data_list
data_dict = {}
for key, value in pkl2any(infile, file_format).items():
if isinstance(value, dict):
data_dict[key] = _convert(value)
return data_dict
def save(self, data: Any, fname: Path, export_format: str) -> None:
"""Save the converted pickle data to a file.
Args:
data (Any): The converted nested dictionary of the pkl data.
fname (Path): The filename of the output file.
export_format (str): The file format of the output file.
Raises:
ValueError: If the export format is not supported.
"""
if export_format.lower() not in choices_export:
raise ValueError(f"Unsupported file format '{export_format}'.")
fname = pure_fname(fname)
for key, value in data.items():
_fname = Path(f"{fname}_{key}").with_suffix(f".{export_format}")
ExportData(data=value, fname=_fname, export_format=export_format)()
def __call__(self) -> None:
"""Run the converter."""
args = self.get_args()
data = self.convert(args["infile"], args["file_format"])
self.save(data, args["infile"], args["export_format"])
__call__()
¶
Run the converter.
Source code in spectrafit/plugins/pkl_converter.py
def __call__(self) -> None:
"""Run the converter."""
args = self.get_args()
data = self.convert(args["infile"], args["file_format"])
self.save(data, args["infile"], args["export_format"])
convert(infile, file_format)
staticmethod
¶
Convert the input file to the output file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
infile | Path | The input file of the as a path object. | required |
file_format | str | The output file format. | required |
Returns:
Type | Description |
---|---|
Dict[str, Any] | Dict[str, Any]: The data as a dictionary, which can be a nested dictionary |
Source code in spectrafit/plugins/pkl_converter.py
@staticmethod
def convert(infile: Path, file_format: str) -> Dict[str, Any]:
"""Convert the input file to the output file.
Args:
infile (Path): The input file of the as a path object.
file_format (str): The output file format.
Returns:
Dict[str, Any]: The data as a dictionary, which can be a nested dictionary
"""
def _convert(
data_values: Dict[str, Any], _key: Optional[List[str]] = None
) -> List[Dict[str, Any]]:
"""Convert the data to a list of dictionaries.
The new key is the old key plus all the subkeys. The new value is the
value of the subkey if the value is an instance of an array.
For avoiding `pylint` errors, the `_key` argument is set to `None` by
default and is set to an empty list if it is `None`. This is done to
avoid the `pylint` error `dangerous-default-value`. The `_key` argument
is used to keep track of the keys of the nested dictionary. Furthermore,
the `_key` argument is used to create the new key for the new dictionary.
Finally, the new dictionary is appended to the list of dictionaries.
Args:
data_values (Dict[str, Any]): The data as a dictionary.
Returns:
List[Dict[str, Any]]: The data as a list of dictionaries.
"""
data_list = []
if _key is None:
_key = []
for key, value in data_values.items():
if isinstance(value, dict):
_key.append(str(key))
data_list.extend(_convert(value, _key))
_key.pop()
elif isinstance(value, np.ndarray):
data_list.append({"_".join(_key + [key]): value})
return data_list
data_dict = {}
for key, value in pkl2any(infile, file_format).items():
if isinstance(value, dict):
data_dict[key] = _convert(value)
return data_dict
get_args()
¶
Get the arguments from the command line.
Returns:
Type | Description |
---|---|
Dict[str, Any] | Dict[str, Any]: Return the input file arguments as a dictionary without additional information beyond the command line arguments. |
Source code in spectrafit/plugins/pkl_converter.py
def get_args(self) -> Dict[str, Any]:
"""Get the arguments from the command line.
Returns:
Dict[str, Any]: Return the input file arguments as a dictionary without
additional information beyond the command line arguments.
"""
parser = argparse.ArgumentParser(
description="Converter for 'SpectraFit' from pkl files to CSV files."
)
parser.add_argument(
"infile",
type=Path,
help="Filename of the pkl file to convert.",
)
parser.add_argument(
"-f",
"--file-format",
help="File format for the optional encoding of the pickle file."
" Default is 'latin1'.",
type=str,
default="latin1",
choices=choices_fformat,
)
parser.add_argument(
"-e",
"--export-format",
help="File format for export of the output file. Default is 'pkl'.",
type=str,
default="pkl",
choices=choices_export,
)
return vars(parser.parse_args())
save(data, fname, export_format)
¶
Save the converted pickle data to a file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data | Any | The converted nested dictionary of the pkl data. | required |
fname | Path | The filename of the output file. | required |
export_format | str | The file format of the output file. | required |
Raises:
Type | Description |
---|---|
ValueError | If the export format is not supported. |
Source code in spectrafit/plugins/pkl_converter.py
def save(self, data: Any, fname: Path, export_format: str) -> None:
"""Save the converted pickle data to a file.
Args:
data (Any): The converted nested dictionary of the pkl data.
fname (Path): The filename of the output file.
export_format (str): The file format of the output file.
Raises:
ValueError: If the export format is not supported.
"""
if export_format.lower() not in choices_export:
raise ValueError(f"Unsupported file format '{export_format}'.")
fname = pure_fname(fname)
for key, value in data.items():
_fname = Path(f"{fname}_{key}").with_suffix(f".{export_format}")
ExportData(data=value, fname=_fname, export_format=export_format)()
command_line_runner()
¶
Run the command line script.
Source code in spectrafit/plugins/pkl_converter.py
def command_line_runner() -> None:
"""Run the command line script."""
PklConverter()()
About pickle file and the PklVisualizer
In addition to exploring the nested structure of the Python's pickle file, the PklVisualizer
provides two methods to visualize the data:
- As graph via
networkx
andmatplotlib
- As json file with used types
Visualize the pkl file as a graph.
PklVisualizer
¶
Bases: Converter
Visualize the pkl data as a graph.
Source code in spectrafit/plugins/pkl_visualizer.py
class PklVisualizer(Converter):
"""Visualize the pkl data as a graph."""
def get_args(self) -> Dict[str, Any]:
"""Get the arguments from the command line.
Returns:
Dict[str, Any]: Return the input file arguments as a dictionary without
additional information beyond the command line arguments.
"""
parser = argparse.ArgumentParser(
description="Converter for 'SpectraFit' from pkl files to a graph."
)
parser.add_argument(
"infile",
type=Path,
help="Filename of the pkl file to convert to graph.",
)
parser.add_argument(
"-f",
"--file-format",
help="File format for the optional encoding of the pickle file."
" Default is 'latin1'.",
type=str,
default="latin1",
choices=choices_fformat,
)
parser.add_argument(
"-e",
"--export-format",
help="File extension for the graph export.",
type=str,
default="pdf",
choices=choices_export,
)
return vars(parser.parse_args())
@staticmethod
def convert(infile: Path, file_format: str) -> Dict[str, Any]:
"""Convert the input file to the output file.
Args:
infile (Path): The input file of the as a path object.
file_format (str): The encoding of the pickle file.
Raises:
ValueError: If the data is not a dictionary.
Returns:
Dict[str, Any]: The data as a dictionary, which can be a nested dictionary.
"""
data = PklVisualizer().get_type(pkl2any(infile, encoding=file_format))
if not isinstance(data, dict):
raise ValueError(f"Data is not a dictionary: {data}")
graph = PklVisualizer().create_graph(fname=infile, data_dict=data)
pos = nx.kamada_kawai_layout(graph, scale=2)
nx.draw_networkx_nodes(
graph, pos, node_size=100, node_color="lightblue", alpha=0.8
)
nx.draw_networkx_edges(graph, pos, width=0.5, edge_color="grey", alpha=0.5)
nx.draw_networkx_labels(graph, pos, font_size=10, font_family="sans-serif")
plt.axis("off")
return data
def save(self, data: Any, fname: Path, export_format: str) -> None:
"""Save the graph to a file and the data and their types to a json file.
Args:
data (Any): The data to save, which can be a nested dictionary.
fname (Path): The filename of the file to save.
export_format (str): The file format to save the graph to.
Raises:
ValueError: If the export format is not supported.
"""
if export_format.lower() not in choices_export:
raise ValueError(f"Export format '{export_format}' is not supported.")
plt.savefig(
pure_fname(fname).with_suffix(f".{export_format}"),
format=export_format,
)
with open(
pure_fname(fname).with_suffix(".json"), "w+", encoding="utf-8"
) as outfile:
json.dump(data, outfile, indent=4)
def get_type(self, value: Any) -> Union[Dict[str, Any], str]:
"""Get the type of the value.
Args:
value (Any): The value to get the type from.
Returns:
Union[Dict[str, Any], str]: The type of the value.
"""
if isinstance(value, dict):
return {key: self.get_type(value) for key, value in value.items()}
if isinstance(value, np.ndarray):
return f"{type(value)} of shape {value.shape}"
return str(type(value))
def add_nodes(self, graph: nx.DiGraph, data_dict: Dict[str, Any]) -> None:
"""Add nodes to the graph.
Args:
graph (nx.DiGraph): The graph to add nodes to.
data_dict (Dict[str, Any]): The data dictionary to get the nodes from.
"""
for key, value in data_dict.items():
graph.add_node(key)
if isinstance(value, dict):
for item in value:
graph.add_edge(key, item)
graph.add_node(item)
self.add_nodes(graph=graph, data_dict=value)
elif "of shape" in str(value):
value = value.split("of shape")
graph.add_node(value[0])
graph.add_edge(key, value[0])
graph.add_node(value[-1])
graph.add_edge(value[0], value[-1])
else:
graph.add_node(value)
graph.add_edge(key, value)
def create_graph(self, fname: Path, data_dict: Dict[str, Any]) -> nx.DiGraph:
"""Create the graph.
Args:
fname (Path): The filename of the file to create the graph from.
data_dict (Dict[str, Any]): The data dictionary to create the graph from.
Returns:
nx.DiGraph: The graph created from the data dictionary.
"""
graph = nx.DiGraph()
graph.add_node(str(fname.name))
for key in data_dict:
graph.add_edge(str(fname.name), key)
self.add_nodes(graph=graph, data_dict=data_dict)
return graph
def __call__(self) -> None:
"""Create the graph and save it as a PDF file."""
args = self.get_args()
self.save(
data=self.convert(args["infile"], args["file_format"]),
fname=args["infile"],
export_format=args["export_format"],
)
plt.show()
__call__()
¶
Create the graph and save it as a PDF file.
Source code in spectrafit/plugins/pkl_visualizer.py
def __call__(self) -> None:
"""Create the graph and save it as a PDF file."""
args = self.get_args()
self.save(
data=self.convert(args["infile"], args["file_format"]),
fname=args["infile"],
export_format=args["export_format"],
)
plt.show()
add_nodes(graph, data_dict)
¶
Add nodes to the graph.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
graph | nx.DiGraph | The graph to add nodes to. | required |
data_dict | Dict[str, Any] | The data dictionary to get the nodes from. | required |
Source code in spectrafit/plugins/pkl_visualizer.py
def add_nodes(self, graph: nx.DiGraph, data_dict: Dict[str, Any]) -> None:
"""Add nodes to the graph.
Args:
graph (nx.DiGraph): The graph to add nodes to.
data_dict (Dict[str, Any]): The data dictionary to get the nodes from.
"""
for key, value in data_dict.items():
graph.add_node(key)
if isinstance(value, dict):
for item in value:
graph.add_edge(key, item)
graph.add_node(item)
self.add_nodes(graph=graph, data_dict=value)
elif "of shape" in str(value):
value = value.split("of shape")
graph.add_node(value[0])
graph.add_edge(key, value[0])
graph.add_node(value[-1])
graph.add_edge(value[0], value[-1])
else:
graph.add_node(value)
graph.add_edge(key, value)
convert(infile, file_format)
staticmethod
¶
Convert the input file to the output file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
infile | Path | The input file of the as a path object. | required |
file_format | str | The encoding of the pickle file. | required |
Raises:
Type | Description |
---|---|
ValueError | If the data is not a dictionary. |
Returns:
Type | Description |
---|---|
Dict[str, Any] | Dict[str, Any]: The data as a dictionary, which can be a nested dictionary. |
Source code in spectrafit/plugins/pkl_visualizer.py
@staticmethod
def convert(infile: Path, file_format: str) -> Dict[str, Any]:
"""Convert the input file to the output file.
Args:
infile (Path): The input file of the as a path object.
file_format (str): The encoding of the pickle file.
Raises:
ValueError: If the data is not a dictionary.
Returns:
Dict[str, Any]: The data as a dictionary, which can be a nested dictionary.
"""
data = PklVisualizer().get_type(pkl2any(infile, encoding=file_format))
if not isinstance(data, dict):
raise ValueError(f"Data is not a dictionary: {data}")
graph = PklVisualizer().create_graph(fname=infile, data_dict=data)
pos = nx.kamada_kawai_layout(graph, scale=2)
nx.draw_networkx_nodes(
graph, pos, node_size=100, node_color="lightblue", alpha=0.8
)
nx.draw_networkx_edges(graph, pos, width=0.5, edge_color="grey", alpha=0.5)
nx.draw_networkx_labels(graph, pos, font_size=10, font_family="sans-serif")
plt.axis("off")
return data
create_graph(fname, data_dict)
¶
Create the graph.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fname | Path | The filename of the file to create the graph from. | required |
data_dict | Dict[str, Any] | The data dictionary to create the graph from. | required |
Returns:
Type | Description |
---|---|
nx.DiGraph | nx.DiGraph: The graph created from the data dictionary. |
Source code in spectrafit/plugins/pkl_visualizer.py
def create_graph(self, fname: Path, data_dict: Dict[str, Any]) -> nx.DiGraph:
"""Create the graph.
Args:
fname (Path): The filename of the file to create the graph from.
data_dict (Dict[str, Any]): The data dictionary to create the graph from.
Returns:
nx.DiGraph: The graph created from the data dictionary.
"""
graph = nx.DiGraph()
graph.add_node(str(fname.name))
for key in data_dict:
graph.add_edge(str(fname.name), key)
self.add_nodes(graph=graph, data_dict=data_dict)
return graph
get_args()
¶
Get the arguments from the command line.
Returns:
Type | Description |
---|---|
Dict[str, Any] | Dict[str, Any]: Return the input file arguments as a dictionary without additional information beyond the command line arguments. |
Source code in spectrafit/plugins/pkl_visualizer.py
def get_args(self) -> Dict[str, Any]:
"""Get the arguments from the command line.
Returns:
Dict[str, Any]: Return the input file arguments as a dictionary without
additional information beyond the command line arguments.
"""
parser = argparse.ArgumentParser(
description="Converter for 'SpectraFit' from pkl files to a graph."
)
parser.add_argument(
"infile",
type=Path,
help="Filename of the pkl file to convert to graph.",
)
parser.add_argument(
"-f",
"--file-format",
help="File format for the optional encoding of the pickle file."
" Default is 'latin1'.",
type=str,
default="latin1",
choices=choices_fformat,
)
parser.add_argument(
"-e",
"--export-format",
help="File extension for the graph export.",
type=str,
default="pdf",
choices=choices_export,
)
return vars(parser.parse_args())
get_type(value)
¶
Get the type of the value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value | Any | The value to get the type from. | required |
Returns:
Type | Description |
---|---|
Union[Dict[str, Any], str] | Union[Dict[str, Any], str]: The type of the value. |
Source code in spectrafit/plugins/pkl_visualizer.py
def get_type(self, value: Any) -> Union[Dict[str, Any], str]:
"""Get the type of the value.
Args:
value (Any): The value to get the type from.
Returns:
Union[Dict[str, Any], str]: The type of the value.
"""
if isinstance(value, dict):
return {key: self.get_type(value) for key, value in value.items()}
if isinstance(value, np.ndarray):
return f"{type(value)} of shape {value.shape}"
return str(type(value))
save(data, fname, export_format)
¶
Save the graph to a file and the data and their types to a json file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data | Any | The data to save, which can be a nested dictionary. | required |
fname | Path | The filename of the file to save. | required |
export_format | str | The file format to save the graph to. | required |
Raises:
Type | Description |
---|---|
ValueError | If the export format is not supported. |
Source code in spectrafit/plugins/pkl_visualizer.py
def save(self, data: Any, fname: Path, export_format: str) -> None:
"""Save the graph to a file and the data and their types to a json file.
Args:
data (Any): The data to save, which can be a nested dictionary.
fname (Path): The filename of the file to save.
export_format (str): The file format to save the graph to.
Raises:
ValueError: If the export format is not supported.
"""
if export_format.lower() not in choices_export:
raise ValueError(f"Export format '{export_format}' is not supported.")
plt.savefig(
pure_fname(fname).with_suffix(f".{export_format}"),
format=export_format,
)
with open(
pure_fname(fname).with_suffix(".json"), "w+", encoding="utf-8"
) as outfile:
json.dump(data, outfile, indent=4)
command_line_runner()
¶
Run the converter from the command line.
Source code in spectrafit/plugins/pkl_visualizer.py
def command_line_runner() -> None:
"""Run the converter from the command line."""
PklVisualizer()()
RIXS Converter for RIXS data¶
Transform the raw pkl data into a JSON, TOML, or numpy file for RIXS.
RIXSConverter
¶
Bases: Converter
Transform the raw pkl data into a JSON, TOML, or numpy file for RIXS.
Source code in spectrafit/plugins/rixs_converter.py
class RIXSConverter(Converter):
"""Transform the raw pkl data into a JSON, TOML, or numpy file for RIXS."""
def get_args(self) -> Dict[str, Any]:
"""Get the arguments from the command line.
Returns:
Dict[str, Any]: Return the input file arguments as a dictionary without
additional information beyond the command line arguments.
"""
parser = argparse.ArgumentParser(
description="Converter for 'SpectraFit' from pkl files to a JSON, TOML, "
"or numpy file for RIXS-Visualizer."
)
parser.add_argument(
"infile",
type=Path,
help="Filename of the pkl file to convert to JSON, TOML, or numpy.",
)
parser.add_argument(
"-f",
"--file-format",
help="File format for the optional encoding of the pickle file."
" Default is 'latin1'.",
type=str,
default="latin1",
choices=choices_fformat,
)
parser.add_argument(
"-e",
"--export-format",
help="File extension for the export.",
type=str,
default="json",
choices=choices_export,
)
parser.add_argument(
"-ie",
"--incident_energy",
help="Name of the incident energy",
type=str,
)
parser.add_argument(
"-ee",
"--emission_energy",
help="Name of the emitted energy",
type=str,
)
parser.add_argument(
"-rm",
"--rixs_map",
help="Name of the RIXS map",
)
parser.add_argument(
"-m",
"--mode",
help="Mode of the RIXS map post-processing, e.g. 'sum' or 'max'."
"Default is 'sum'.",
type=str,
default="sum",
choices=choices_mode,
)
return vars(parser.parse_args())
@staticmethod
def convert(infile: Path, file_format: str) -> MutableMapping[str, Any]:
"""Convert the pkl file to a dictionary.
Args:
infile (Path): The input file.
file_format (str): The file format for the optional encoding of the pickle
file.
Returns:
MutableMapping[str, Any]: The data dictionary from the pkl file.
"""
data_dict = {}
for _dict in pkl2any(infile, file_format):
data_dict.update(_dict)
return data_dict
def create_rixs(
self,
data: MutableMapping[str, Any],
incident_energy: str,
emission_energy: str,
rixs_map: str,
mode: str,
) -> RIXSModelAPI:
"""Create the RIXS map from the pkl file.
Args:
data (MutableMapping[str, Any]): The data dictionary from the pkl file.
incident_energy (str): The name of the incident energy.
emission_energy (str): The name of the emitted energy.
rixs_map (str): The name of the RIXS map.
mode (str): The mode of the RIXS map post-processing, e.g. 'sum' or 'max'.
Raises:
ValueError: If the mode is not in the choices.
KeyError: If the incident energy, emission energy, or RIXS map is not in
the data.
Returns:
RIXSModelAPI: The RIXS map as a RIXSModelAPI pydantic object.
"""
if mode not in choices_mode:
raise ValueError(f"Mode '{mode}' not in {choices_mode}.")
if incident_energy not in data:
self.raise_error(incident_energy, data)
if emission_energy not in data:
self.raise_error(incident_energy, data)
if rixs_map not in data:
self.raise_error(incident_energy, data)
if mode == "sum":
rixs_val = np.sum(data[rixs_map], axis=0)
elif mode == "mean":
rixs_val = np.mean(data[rixs_map], axis=0)
return RIXSModelAPI(
incident_energy=data[incident_energy],
emission_energy=data[emission_energy],
rixs_map=rixs_val,
)
@staticmethod
def raise_error(wrong_key: str, data: Any) -> None:
"""Raise an error if the key is not in the data.
Args:
wrong_key (str): The key which is not in the data.
data (Any): The data dictionary from the pkl file.
Raises:
KeyError: If the key is not in the data.
"""
raise KeyError(
f"Key '{wrong_key}' not in data. Aailable keys are: {list(data.keys())}."
)
def save(self, data: Any, fname: Path, export_format: str) -> None:
"""Save the data to a file.
Args:
data (Any): The data to save.
fname (Path): The filename.
export_format (str): The file extension for the export.
Raises:
ValueError: If the export format is not in the choices.
"""
if export_format not in choices_export:
raise ValueError(
f"Export format '{export_format}' not in {choices_export}."
)
if export_format == "json":
with open(
pure_fname(fname).with_suffix(f".{export_format}"),
"w",
encoding="utf-8",
) as f:
json.dump(self.numpydict2listdict(data), f, indent=4)
elif export_format in {"toml", "lock"}:
with open(
pure_fname(fname).with_suffix(f".{export_format}"),
"wb",
) as f:
tomli_w.dump(self.numpydict2listdict(data), f, multiline_strings=False)
elif export_format == "npy":
np.save(pure_fname(fname).with_suffix(f".{export_format}"), data)
elif export_format == "npz":
np.savez(pure_fname(fname).with_suffix(f".{export_format}"), **data)
@staticmethod
def numpydict2listdict(data: MutableMapping[str, Any]) -> MutableMapping[str, Any]:
"""Convert a dictionary with numpy arrays to a dictionary with lists.
Args:
data (MutableMapping[str, Any]): The data dictionary.
Returns:
MutableMapping[str, Any]: The data dictionary with lists.
"""
return {k: v.tolist() for k, v in data.items()}
def __call__(self) -> None:
"""Run the converter."""
args = self.get_args()
self.save(
data=self.create_rixs(
data=self.convert(args["infile"], args["file_format"]),
incident_energy=args["incident_energy"],
emission_energy=args["emission_energy"],
rixs_map=args["rixs_map"],
mode=args["mode"],
).dict(),
fname=args["infile"],
export_format=args["export_format"],
)
__call__()
¶
Run the converter.
Source code in spectrafit/plugins/rixs_converter.py
def __call__(self) -> None:
"""Run the converter."""
args = self.get_args()
self.save(
data=self.create_rixs(
data=self.convert(args["infile"], args["file_format"]),
incident_energy=args["incident_energy"],
emission_energy=args["emission_energy"],
rixs_map=args["rixs_map"],
mode=args["mode"],
).dict(),
fname=args["infile"],
export_format=args["export_format"],
)
convert(infile, file_format)
staticmethod
¶
Convert the pkl file to a dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
infile | Path | The input file. | required |
file_format | str | The file format for the optional encoding of the pickle file. | required |
Returns:
Type | Description |
---|---|
MutableMapping[str, Any] | MutableMapping[str, Any]: The data dictionary from the pkl file. |
Source code in spectrafit/plugins/rixs_converter.py
@staticmethod
def convert(infile: Path, file_format: str) -> MutableMapping[str, Any]:
"""Convert the pkl file to a dictionary.
Args:
infile (Path): The input file.
file_format (str): The file format for the optional encoding of the pickle
file.
Returns:
MutableMapping[str, Any]: The data dictionary from the pkl file.
"""
data_dict = {}
for _dict in pkl2any(infile, file_format):
data_dict.update(_dict)
return data_dict
create_rixs(data, incident_energy, emission_energy, rixs_map, mode)
¶
Create the RIXS map from the pkl file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data | MutableMapping[str, Any] | The data dictionary from the pkl file. | required |
incident_energy | str | The name of the incident energy. | required |
emission_energy | str | The name of the emitted energy. | required |
rixs_map | str | The name of the RIXS map. | required |
mode | str | The mode of the RIXS map post-processing, e.g. 'sum' or 'max'. | required |
Raises:
Type | Description |
---|---|
ValueError | If the mode is not in the choices. |
KeyError | If the incident energy, emission energy, or RIXS map is not in the data. |
Returns:
Name | Type | Description |
---|---|---|
RIXSModelAPI | RIXSModelAPI | The RIXS map as a RIXSModelAPI pydantic object. |
Source code in spectrafit/plugins/rixs_converter.py
def create_rixs(
self,
data: MutableMapping[str, Any],
incident_energy: str,
emission_energy: str,
rixs_map: str,
mode: str,
) -> RIXSModelAPI:
"""Create the RIXS map from the pkl file.
Args:
data (MutableMapping[str, Any]): The data dictionary from the pkl file.
incident_energy (str): The name of the incident energy.
emission_energy (str): The name of the emitted energy.
rixs_map (str): The name of the RIXS map.
mode (str): The mode of the RIXS map post-processing, e.g. 'sum' or 'max'.
Raises:
ValueError: If the mode is not in the choices.
KeyError: If the incident energy, emission energy, or RIXS map is not in
the data.
Returns:
RIXSModelAPI: The RIXS map as a RIXSModelAPI pydantic object.
"""
if mode not in choices_mode:
raise ValueError(f"Mode '{mode}' not in {choices_mode}.")
if incident_energy not in data:
self.raise_error(incident_energy, data)
if emission_energy not in data:
self.raise_error(incident_energy, data)
if rixs_map not in data:
self.raise_error(incident_energy, data)
if mode == "sum":
rixs_val = np.sum(data[rixs_map], axis=0)
elif mode == "mean":
rixs_val = np.mean(data[rixs_map], axis=0)
return RIXSModelAPI(
incident_energy=data[incident_energy],
emission_energy=data[emission_energy],
rixs_map=rixs_val,
)
get_args()
¶
Get the arguments from the command line.
Returns:
Type | Description |
---|---|
Dict[str, Any] | Dict[str, Any]: Return the input file arguments as a dictionary without additional information beyond the command line arguments. |
Source code in spectrafit/plugins/rixs_converter.py
def get_args(self) -> Dict[str, Any]:
"""Get the arguments from the command line.
Returns:
Dict[str, Any]: Return the input file arguments as a dictionary without
additional information beyond the command line arguments.
"""
parser = argparse.ArgumentParser(
description="Converter for 'SpectraFit' from pkl files to a JSON, TOML, "
"or numpy file for RIXS-Visualizer."
)
parser.add_argument(
"infile",
type=Path,
help="Filename of the pkl file to convert to JSON, TOML, or numpy.",
)
parser.add_argument(
"-f",
"--file-format",
help="File format for the optional encoding of the pickle file."
" Default is 'latin1'.",
type=str,
default="latin1",
choices=choices_fformat,
)
parser.add_argument(
"-e",
"--export-format",
help="File extension for the export.",
type=str,
default="json",
choices=choices_export,
)
parser.add_argument(
"-ie",
"--incident_energy",
help="Name of the incident energy",
type=str,
)
parser.add_argument(
"-ee",
"--emission_energy",
help="Name of the emitted energy",
type=str,
)
parser.add_argument(
"-rm",
"--rixs_map",
help="Name of the RIXS map",
)
parser.add_argument(
"-m",
"--mode",
help="Mode of the RIXS map post-processing, e.g. 'sum' or 'max'."
"Default is 'sum'.",
type=str,
default="sum",
choices=choices_mode,
)
return vars(parser.parse_args())
numpydict2listdict(data)
staticmethod
¶
Convert a dictionary with numpy arrays to a dictionary with lists.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data | MutableMapping[str, Any] | The data dictionary. | required |
Returns:
Type | Description |
---|---|
MutableMapping[str, Any] | MutableMapping[str, Any]: The data dictionary with lists. |
Source code in spectrafit/plugins/rixs_converter.py
@staticmethod
def numpydict2listdict(data: MutableMapping[str, Any]) -> MutableMapping[str, Any]:
"""Convert a dictionary with numpy arrays to a dictionary with lists.
Args:
data (MutableMapping[str, Any]): The data dictionary.
Returns:
MutableMapping[str, Any]: The data dictionary with lists.
"""
return {k: v.tolist() for k, v in data.items()}
raise_error(wrong_key, data)
staticmethod
¶
Raise an error if the key is not in the data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
wrong_key | str | The key which is not in the data. | required |
data | Any | The data dictionary from the pkl file. | required |
Raises:
Type | Description |
---|---|
KeyError | If the key is not in the data. |
Source code in spectrafit/plugins/rixs_converter.py
@staticmethod
def raise_error(wrong_key: str, data: Any) -> None:
"""Raise an error if the key is not in the data.
Args:
wrong_key (str): The key which is not in the data.
data (Any): The data dictionary from the pkl file.
Raises:
KeyError: If the key is not in the data.
"""
raise KeyError(
f"Key '{wrong_key}' not in data. Aailable keys are: {list(data.keys())}."
)
save(data, fname, export_format)
¶
Save the data to a file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data | Any | The data to save. | required |
fname | Path | The filename. | required |
export_format | str | The file extension for the export. | required |
Raises:
Type | Description |
---|---|
ValueError | If the export format is not in the choices. |
Source code in spectrafit/plugins/rixs_converter.py
def save(self, data: Any, fname: Path, export_format: str) -> None:
"""Save the data to a file.
Args:
data (Any): The data to save.
fname (Path): The filename.
export_format (str): The file extension for the export.
Raises:
ValueError: If the export format is not in the choices.
"""
if export_format not in choices_export:
raise ValueError(
f"Export format '{export_format}' not in {choices_export}."
)
if export_format == "json":
with open(
pure_fname(fname).with_suffix(f".{export_format}"),
"w",
encoding="utf-8",
) as f:
json.dump(self.numpydict2listdict(data), f, indent=4)
elif export_format in {"toml", "lock"}:
with open(
pure_fname(fname).with_suffix(f".{export_format}"),
"wb",
) as f:
tomli_w.dump(self.numpydict2listdict(data), f, multiline_strings=False)
elif export_format == "npy":
np.save(pure_fname(fname).with_suffix(f".{export_format}"), data)
elif export_format == "npz":
np.savez(pure_fname(fname).with_suffix(f".{export_format}"), **data)
command_line_runner()
¶
Run the command line script.
Source code in spectrafit/plugins/rixs_converter.py
def command_line_runner() -> None:
"""Run the command line script."""
RIXSConverter()()
On top of the RIXSConverter
class, the RIXSVisualizer
class is available to visualize the RIXS data and provide a method to take RIXS cuts.
This module contains the RIXS visualizer class.
RIXSApp
¶
Bases: RIXSFigure
Create the RIXS app.
About the RIXS app
The RIXS app is a web application that allows you to visualize the RIXS data. The app is based on the Dash framework. The app is composed of three figures: the RIXS figure, the XES figure and the XAS figure.
The RIXS figure is a 3D surface plot. The XES figure is a line plot showing the XES spectrum. The XAS figure is a line plot showing the XAS spectrum.
The RIXS figure is interactive. You can zoom in and out, rotate the figure, and change the color scale. The XES and XAS figures are not interactive.
Source code in spectrafit/plugins/rixs_visualizer.py
class RIXSApp(RIXSFigure): # pragma: no cover
"""Create the RIXS app.
!!! info "About the RIXS app"
The RIXS app is a web application that allows you to visualize the RIXS
data. The app is based on the Dash framework. The app is composed of
three figures: the RIXS figure, the XES figure and the XAS figure.
The RIXS figure is a 3D surface plot. The XES figure is a line plot
showing the XES spectrum. The XAS figure is a line plot showing the XAS
spectrum.
The RIXS figure is interactive. You can zoom in and out, rotate the
figure, and change the color scale. The XES and XAS figures are not
interactive.
"""
def __init__(
self,
incident_energy: NDArray[np.float64],
emission_energy: NDArray[np.float64],
rixs_map: NDArray[np.float64],
size: SizeRatioAPI = SizeRatioAPI(
size=(500, 500),
ratio_rixs=(2, 2),
ratio_xas=(3, 1),
ratio_xes=(3, 1),
),
main_title: MainTitleAPI = MainTitleAPI(rixs="RIXS", xes="XES", xas="XAS"),
fdir: Path = Path("./"),
mode: str = "server",
jupyter_dash: bool = False,
port: int = 8050,
debug: bool = False,
) -> None:
"""Create the RIXS app.
Args:
incident_energy (NDArray[np.float64]): Incident energy.
emission_energy (NDArray[np.float64]): Emission energy.
rixs_map (NDArray[np.float64]): RIXS data as a 2D array.
size (SizeRatioAPI, optional): Size of the figures. Defaults to
SizeRatioAPI(size=(500, 500), ratio_rixs=(2, 2), ratio_xas=(3, 1),
ratio_xes=(3, 1)).
main_title (MainTitleAPI, optional): Main title of the figures.
Defaults to MainTitleAPI(rixs="RIXS", xes="XES", xas="XAS").
fdir (Path, optional): Directory to save the figures. Defaults to
Path("./").
mode (str, optional): Mode of the app. Defaults to "server".
port (int, optional): Port of the app. Defaults to 8050.
jupyter_dash (bool, optional): Jupyter Dash mode. Defaults to False.
debug (bool, optional): Debug mode. Defaults to False.
"""
super().__init__(
incident_energy=incident_energy,
emission_energy=emission_energy,
rixs_map=rixs_map,
size=size,
)
self.fdir = fdir
self.main_title = main_title
self.mode = mode
self.jupyter_dash = jupyter_dash
self.port = port
self.debug = debug
if not self.debug:
self.logging_flask()
def logging_flask(self) -> None:
"""Set the logging level of the Flask server to ERROR."""
log = logging.getLogger("werkzeug")
log.setLevel(logging.ERROR)
def colorscale(self) -> html.Div:
"""Create the color scale dropdown.
Returns:
html.Div: Color scale dropdown.
"""
return html.Div(
[
dbc.Label("Color Scale"),
dcc.Dropdown(
id="colorscale",
options=[
{"label": "Viridis", "value": "Viridis"},
{"label": "Plasma", "value": "Plasma"},
{"label": "Inferno", "value": "Inferno"},
{"label": "Magma", "value": "Magma"},
{"label": "Cividis", "value": "Cividis"},
{"label": "Greys", "value": "Greys"},
{"label": "Greens", "value": "Greens"},
{"label": "YlOrRd", "value": "YlOrRd"},
{"label": "Bluered", "value": "Bluered"},
{"label": "RdBu", "value": "RdBu"},
{"label": "Reds", "value": "Reds"},
{"label": "Blues", "value": "Blues"},
{"label": "Picnic", "value": "Picnic"},
{"label": "Rainbow", "value": "Rainbow"},
{"label": "Portland", "value": "Portland"},
{"label": "Jet", "value": "Jet"},
{"label": "Hot", "value": "Hot"},
{"label": "Blackbody", "value": "Blackbody"},
{"label": "Earth", "value": "Earth"},
{"label": "Electric", "value": "Electric"},
{"label": "Viridis", "value": "Viridis"},
{"label": "Cividis", "value": "Cividis"},
],
value="Viridis",
),
],
className="dbc",
)
def opacity(self) -> html.Div:
"""Create the opacity slider.
Returns:
html.Div: Opacity slider.
"""
return html.Div(
[
dbc.Label("Opacity"),
dcc.Slider(
id="opacity",
min=0,
max=1,
step=0.1,
value=1,
marks={i: str(i) for i in range(2)},
),
]
)
def header(self) -> dbc.Card:
"""Create the header.
Returns:
dbc.Card: Header as a bootstrap card.
"""
return dbc.Card(
dbc.CardBody(
[
html.H4(
"RIXS Visualizer App",
className="bg-primary text-white p-2 mb-2 text-center",
)
]
)
)
def pre_body(self) -> Tuple[html.Div, html.Div, html.Div]:
"""Create the body.
Returns:
Tuple[html.Div, html.Div, html.Div]: Body as a tuple of three plot parts.
"""
rixs = html.Div(
[
dbc.Label(self.main_title.rixs),
dcc.Graph(id="rixs-figure"),
]
)
xes = html.Div(
[
dbc.Label(self.main_title.xes),
dcc.Graph(id="xes-figure"),
]
)
xas = html.Div(
[
dbc.Label(self.main_title.xas),
dcc.Graph(id="xas-figure"),
]
)
return rixs, xes, xas
def body(self) -> dbc.Card:
"""Create the body.
Returns:
dbc.Card: Body as a bootstrap card.
"""
colorscale = self.colorscale()
opacity = self.opacity()
rixs, xes, xas = self.pre_body()
return (
dbc.Card(
dbc.CardBody(
[
dbc.Row([ThemeChangerAIO(aio_id="theme")]),
dbc.Row(
[
dbc.Col(
html.H1("RIXS Viewer", className="text-center")
),
],
justify="left",
),
html.Br(),
dbc.Row(
[
dbc.Col(colorscale),
dbc.Col(opacity),
],
),
html.Br(),
dbc.Row(
[
dbc.Col(rixs),
dbc.Col([xes, xas]),
],
justify="left",
),
html.Br(),
],
),
class_name="mt-4",
),
)[0]
def footer(self) -> dbc.Card:
"""Create the footer.
Returns:
dbc.Card: Footer as a bootstrap card.
"""
return (
dbc.Card(
dbc.CardBody(
[
dbc.Row(
[
dcc.Markdown(
"""
### RIXS Viewer
This is a simple RIXS viewer. It is based on the
[Dash](https://dash.plotly.com/)
framework and uses the [Plotly](https://plotly.com/python/) library
for plotting. The code is available on
[GitHub](https://github.com/anselmoo/spectrafit).
"""
),
],
justify="left",
)
]
),
class_name="mt-4",
),
)[0]
def app_run(self) -> None:
"""Run the app."""
dbc_css = (
"https://cdn.jsdelivr.net/gh/AnnMarieW/dash-bootstrap-templates/dbc.min.css"
)
external_stylesheets = [dbc.themes.COSMO, dbc_css]
if self.jupyter_dash:
app = JupyterDash(__name__, external_stylesheets=external_stylesheets)
else:
app = dash.Dash(
__name__,
external_stylesheets=external_stylesheets,
meta_tags=[
{
"name": "viewport",
"content": "width=device-width, initial-scale=1",
}
],
)
app.layout = dbc.Container(
[
self.header(),
self.body(),
self.footer(),
],
fluid=True,
)
@app.callback(
[
dash.dependencies.Output("xes-figure", "figure"),
dash.dependencies.Output("xas-figure", "figure"),
dash.dependencies.Output("rixs-figure", "figure"),
],
[
dash.dependencies.Input("rixs-figure", "hoverData"),
dash.dependencies.Input("rixs-figure", "clickData"),
dash.dependencies.Input("colorscale", "value"),
dash.dependencies.Input("opacity", "value"),
dash.dependencies.Input(ThemeChangerAIO.ids.radio("theme"), "value"),
],
)
def update_hover_data(
hoverData: Dict[str, List[Dict[str, float]]],
clickData: Dict[str, List[Dict[str, float]]],
colorscale: str,
opacity: float,
theme: str,
) -> Tuple[go.Figure, go.Figure, go.Figure]:
if hoverData is None:
return (
self.create_xas(
x=self.incident_energy,
y=self.rixs_map[:, int(self.emission_energy.size / 2)],
template=template_from_url(theme),
),
self.create_xes(
x=self.emission_energy,
y=self.rixs_map[int(self.incident_energy.size / 2), :],
template=template_from_url(theme),
),
self.create_rixs(
colorscale=colorscale,
opacity=opacity,
template=template_from_url(theme),
),
)
x = hoverData["points"][0]["x"]
y = hoverData["points"][0]["y"]
xes_fig = self.create_xas(
x=self.incident_energy,
y=self.rixs_map[:, int(x)],
template=template_from_url(theme),
)
xas_fig = self.create_xes(
x=self.emission_energy,
y=self.rixs_map[int(y), :],
template=template_from_url(theme),
)
rixs_fig = self.create_rixs(
colorscale=colorscale,
opacity=opacity,
template=template_from_url(theme),
)
if clickData is None:
return xes_fig, xas_fig, rixs_fig
cx = clickData["points"][0]["x"]
cy = clickData["points"][0]["y"]
pd.DataFrame(
{"energy": self.emission_energy, "intensity": self.rixs_map[int(cy), :]}
).to_csv(
self.fdir / f"xes_cut_{np.round(cx, 8)}.txt",
index=False,
)
pd.DataFrame(
{"energy": self.incident_energy, "intensity": self.rixs_map[:, int(cx)]}
).to_csv(
self.fdir / f"xas_cut_{np.round(cy, 8)}.txt",
index=False,
)
return xes_fig, xas_fig, rixs_fig
if self.jupyter_dash:
app.run_server(mode=self.mode, debug=self.debug, port=self.port)
else:
app.run_server(debug=self.debug, port=self.port)
__init__(incident_energy, emission_energy, rixs_map, size=SizeRatioAPI(size=(500, 500), ratio_rixs=(2, 2), ratio_xas=(3, 1), ratio_xes=(3, 1)), main_title=MainTitleAPI(rixs='RIXS', xes='XES', xas='XAS'), fdir=Path('./'), mode='server', jupyter_dash=False, port=8050, debug=False)
¶
Create the RIXS app.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
incident_energy | NDArray[np.float64] | Incident energy. | required |
emission_energy | NDArray[np.float64] | Emission energy. | required |
rixs_map | NDArray[np.float64] | RIXS data as a 2D array. | required |
size | SizeRatioAPI | Size of the figures. Defaults to SizeRatioAPI(size=(500, 500), ratio_rixs=(2, 2), ratio_xas=(3, 1), ratio_xes=(3, 1)). | SizeRatioAPI(size=(500, 500), ratio_rixs=(2, 2), ratio_xas=(3, 1), ratio_xes=(3, 1)) |
main_title | MainTitleAPI | Main title of the figures. Defaults to MainTitleAPI(rixs="RIXS", xes="XES", xas="XAS"). | MainTitleAPI(rixs='RIXS', xes='XES', xas='XAS') |
fdir | Path | Directory to save the figures. Defaults to Path("./"). | Path('./') |
mode | str | Mode of the app. Defaults to "server". | 'server' |
port | int | Port of the app. Defaults to 8050. | 8050 |
jupyter_dash | bool | Jupyter Dash mode. Defaults to False. | False |
debug | bool | Debug mode. Defaults to False. | False |
Source code in spectrafit/plugins/rixs_visualizer.py
def __init__(
self,
incident_energy: NDArray[np.float64],
emission_energy: NDArray[np.float64],
rixs_map: NDArray[np.float64],
size: SizeRatioAPI = SizeRatioAPI(
size=(500, 500),
ratio_rixs=(2, 2),
ratio_xas=(3, 1),
ratio_xes=(3, 1),
),
main_title: MainTitleAPI = MainTitleAPI(rixs="RIXS", xes="XES", xas="XAS"),
fdir: Path = Path("./"),
mode: str = "server",
jupyter_dash: bool = False,
port: int = 8050,
debug: bool = False,
) -> None:
"""Create the RIXS app.
Args:
incident_energy (NDArray[np.float64]): Incident energy.
emission_energy (NDArray[np.float64]): Emission energy.
rixs_map (NDArray[np.float64]): RIXS data as a 2D array.
size (SizeRatioAPI, optional): Size of the figures. Defaults to
SizeRatioAPI(size=(500, 500), ratio_rixs=(2, 2), ratio_xas=(3, 1),
ratio_xes=(3, 1)).
main_title (MainTitleAPI, optional): Main title of the figures.
Defaults to MainTitleAPI(rixs="RIXS", xes="XES", xas="XAS").
fdir (Path, optional): Directory to save the figures. Defaults to
Path("./").
mode (str, optional): Mode of the app. Defaults to "server".
port (int, optional): Port of the app. Defaults to 8050.
jupyter_dash (bool, optional): Jupyter Dash mode. Defaults to False.
debug (bool, optional): Debug mode. Defaults to False.
"""
super().__init__(
incident_energy=incident_energy,
emission_energy=emission_energy,
rixs_map=rixs_map,
size=size,
)
self.fdir = fdir
self.main_title = main_title
self.mode = mode
self.jupyter_dash = jupyter_dash
self.port = port
self.debug = debug
if not self.debug:
self.logging_flask()
app_run()
¶
Run the app.
Source code in spectrafit/plugins/rixs_visualizer.py
def app_run(self) -> None:
"""Run the app."""
dbc_css = (
"https://cdn.jsdelivr.net/gh/AnnMarieW/dash-bootstrap-templates/dbc.min.css"
)
external_stylesheets = [dbc.themes.COSMO, dbc_css]
if self.jupyter_dash:
app = JupyterDash(__name__, external_stylesheets=external_stylesheets)
else:
app = dash.Dash(
__name__,
external_stylesheets=external_stylesheets,
meta_tags=[
{
"name": "viewport",
"content": "width=device-width, initial-scale=1",
}
],
)
app.layout = dbc.Container(
[
self.header(),
self.body(),
self.footer(),
],
fluid=True,
)
@app.callback(
[
dash.dependencies.Output("xes-figure", "figure"),
dash.dependencies.Output("xas-figure", "figure"),
dash.dependencies.Output("rixs-figure", "figure"),
],
[
dash.dependencies.Input("rixs-figure", "hoverData"),
dash.dependencies.Input("rixs-figure", "clickData"),
dash.dependencies.Input("colorscale", "value"),
dash.dependencies.Input("opacity", "value"),
dash.dependencies.Input(ThemeChangerAIO.ids.radio("theme"), "value"),
],
)
def update_hover_data(
hoverData: Dict[str, List[Dict[str, float]]],
clickData: Dict[str, List[Dict[str, float]]],
colorscale: str,
opacity: float,
theme: str,
) -> Tuple[go.Figure, go.Figure, go.Figure]:
if hoverData is None:
return (
self.create_xas(
x=self.incident_energy,
y=self.rixs_map[:, int(self.emission_energy.size / 2)],
template=template_from_url(theme),
),
self.create_xes(
x=self.emission_energy,
y=self.rixs_map[int(self.incident_energy.size / 2), :],
template=template_from_url(theme),
),
self.create_rixs(
colorscale=colorscale,
opacity=opacity,
template=template_from_url(theme),
),
)
x = hoverData["points"][0]["x"]
y = hoverData["points"][0]["y"]
xes_fig = self.create_xas(
x=self.incident_energy,
y=self.rixs_map[:, int(x)],
template=template_from_url(theme),
)
xas_fig = self.create_xes(
x=self.emission_energy,
y=self.rixs_map[int(y), :],
template=template_from_url(theme),
)
rixs_fig = self.create_rixs(
colorscale=colorscale,
opacity=opacity,
template=template_from_url(theme),
)
if clickData is None:
return xes_fig, xas_fig, rixs_fig
cx = clickData["points"][0]["x"]
cy = clickData["points"][0]["y"]
pd.DataFrame(
{"energy": self.emission_energy, "intensity": self.rixs_map[int(cy), :]}
).to_csv(
self.fdir / f"xes_cut_{np.round(cx, 8)}.txt",
index=False,
)
pd.DataFrame(
{"energy": self.incident_energy, "intensity": self.rixs_map[:, int(cx)]}
).to_csv(
self.fdir / f"xas_cut_{np.round(cy, 8)}.txt",
index=False,
)
return xes_fig, xas_fig, rixs_fig
if self.jupyter_dash:
app.run_server(mode=self.mode, debug=self.debug, port=self.port)
else:
app.run_server(debug=self.debug, port=self.port)
body()
¶
Create the body.
Returns:
Type | Description |
---|---|
dbc.Card | dbc.Card: Body as a bootstrap card. |
Source code in spectrafit/plugins/rixs_visualizer.py
def body(self) -> dbc.Card:
"""Create the body.
Returns:
dbc.Card: Body as a bootstrap card.
"""
colorscale = self.colorscale()
opacity = self.opacity()
rixs, xes, xas = self.pre_body()
return (
dbc.Card(
dbc.CardBody(
[
dbc.Row([ThemeChangerAIO(aio_id="theme")]),
dbc.Row(
[
dbc.Col(
html.H1("RIXS Viewer", className="text-center")
),
],
justify="left",
),
html.Br(),
dbc.Row(
[
dbc.Col(colorscale),
dbc.Col(opacity),
],
),
html.Br(),
dbc.Row(
[
dbc.Col(rixs),
dbc.Col([xes, xas]),
],
justify="left",
),
html.Br(),
],
),
class_name="mt-4",
),
)[0]
colorscale()
¶
Create the color scale dropdown.
Returns:
Type | Description |
---|---|
html.Div | html.Div: Color scale dropdown. |
Source code in spectrafit/plugins/rixs_visualizer.py
def colorscale(self) -> html.Div:
"""Create the color scale dropdown.
Returns:
html.Div: Color scale dropdown.
"""
return html.Div(
[
dbc.Label("Color Scale"),
dcc.Dropdown(
id="colorscale",
options=[
{"label": "Viridis", "value": "Viridis"},
{"label": "Plasma", "value": "Plasma"},
{"label": "Inferno", "value": "Inferno"},
{"label": "Magma", "value": "Magma"},
{"label": "Cividis", "value": "Cividis"},
{"label": "Greys", "value": "Greys"},
{"label": "Greens", "value": "Greens"},
{"label": "YlOrRd", "value": "YlOrRd"},
{"label": "Bluered", "value": "Bluered"},
{"label": "RdBu", "value": "RdBu"},
{"label": "Reds", "value": "Reds"},
{"label": "Blues", "value": "Blues"},
{"label": "Picnic", "value": "Picnic"},
{"label": "Rainbow", "value": "Rainbow"},
{"label": "Portland", "value": "Portland"},
{"label": "Jet", "value": "Jet"},
{"label": "Hot", "value": "Hot"},
{"label": "Blackbody", "value": "Blackbody"},
{"label": "Earth", "value": "Earth"},
{"label": "Electric", "value": "Electric"},
{"label": "Viridis", "value": "Viridis"},
{"label": "Cividis", "value": "Cividis"},
],
value="Viridis",
),
],
className="dbc",
)
footer()
¶
Create the footer.
Returns:
Type | Description |
---|---|
dbc.Card | dbc.Card: Footer as a bootstrap card. |
Source code in spectrafit/plugins/rixs_visualizer.py
def footer(self) -> dbc.Card:
"""Create the footer.
Returns:
dbc.Card: Footer as a bootstrap card.
"""
return (
dbc.Card(
dbc.CardBody(
[
dbc.Row(
[
dcc.Markdown(
"""
### RIXS Viewer
This is a simple RIXS viewer. It is based on the
[Dash](https://dash.plotly.com/)
framework and uses the [Plotly](https://plotly.com/python/) library
for plotting. The code is available on
[GitHub](https://github.com/anselmoo/spectrafit).
"""
),
],
justify="left",
)
]
),
class_name="mt-4",
),
)[0]
header()
¶
Create the header.
Returns:
Type | Description |
---|---|
dbc.Card | dbc.Card: Header as a bootstrap card. |
Source code in spectrafit/plugins/rixs_visualizer.py
def header(self) -> dbc.Card:
"""Create the header.
Returns:
dbc.Card: Header as a bootstrap card.
"""
return dbc.Card(
dbc.CardBody(
[
html.H4(
"RIXS Visualizer App",
className="bg-primary text-white p-2 mb-2 text-center",
)
]
)
)
logging_flask()
¶
Set the logging level of the Flask server to ERROR.
Source code in spectrafit/plugins/rixs_visualizer.py
def logging_flask(self) -> None:
"""Set the logging level of the Flask server to ERROR."""
log = logging.getLogger("werkzeug")
log.setLevel(logging.ERROR)
opacity()
¶
Create the opacity slider.
Returns:
Type | Description |
---|---|
html.Div | html.Div: Opacity slider. |
Source code in spectrafit/plugins/rixs_visualizer.py
def opacity(self) -> html.Div:
"""Create the opacity slider.
Returns:
html.Div: Opacity slider.
"""
return html.Div(
[
dbc.Label("Opacity"),
dcc.Slider(
id="opacity",
min=0,
max=1,
step=0.1,
value=1,
marks={i: str(i) for i in range(2)},
),
]
)
pre_body()
¶
Create the body.
Returns:
Type | Description |
---|---|
Tuple[html.Div, html.Div, html.Div] | Tuple[html.Div, html.Div, html.Div]: Body as a tuple of three plot parts. |
Source code in spectrafit/plugins/rixs_visualizer.py
def pre_body(self) -> Tuple[html.Div, html.Div, html.Div]:
"""Create the body.
Returns:
Tuple[html.Div, html.Div, html.Div]: Body as a tuple of three plot parts.
"""
rixs = html.Div(
[
dbc.Label(self.main_title.rixs),
dcc.Graph(id="rixs-figure"),
]
)
xes = html.Div(
[
dbc.Label(self.main_title.xes),
dcc.Graph(id="xes-figure"),
]
)
xas = html.Div(
[
dbc.Label(self.main_title.xas),
dcc.Graph(id="xas-figure"),
]
)
return rixs, xes, xas
RIXSFigure
¶
Class to create the RIXS figure.
About the RIXS figure
The RIXS figure is composed of three subplots:
- RIXS -> 3D plot
- XES -> 2D plot
- XAS -> 2D plot
Source code in spectrafit/plugins/rixs_visualizer.py
class RIXSFigure:
"""Class to create the RIXS figure.
!!! info "About the RIXS figure"
The RIXS figure is composed of three subplots:
- RIXS -> 3D plot
- XES -> 2D plot
- XAS -> 2D plot
"""
def __init__(
self,
incident_energy: NDArray[np.float64],
emission_energy: NDArray[np.float64],
rixs_map: NDArray[np.float64],
size: SizeRatioAPI = SizeRatioAPI(
size=(500, 500),
ratio_rixs=(2, 2),
ratio_xes=(3, 1),
ratio_xas=(3, 1),
),
x_axis: XAxisAPI = XAxisAPI(name="Incident Energy", unit="eV"),
y_axis: YAxisAPI = YAxisAPI(name="Emission Energy", unit="eV"),
z_axis: ZAxisAPI = ZAxisAPI(name="Intensity", unit="a.u."),
):
"""Initialize the RIXS figure.
Args:
incident_energy (NDArray[np.float64]): Incident energy.
emission_energy (NDArray[np.float64]): Emission energy.
rixs_map (NDArray[np.float64]): RIXS data as a 2D array.
size (SizeRatioAPI, optional): Size of the figure.
Defaults to SizeRatioAPI(size=(500, 500), ratio_rixs=(2, 2),
ratio_xes=(3, 1), ratio_xas=(3, 1)).
x_axis (XAxisAPI, optional): X-Axis of the figure.
Defaults to XAxisAPI(name="Incident Energy", unit="eV").
y_axis (YAxisAPI, optional): Y-Axis of the figure.
Defaults to YAxisAPI(name="Emission Energy", unit="eV").
z_axis (ZAxisAPI, optional): Z-Axis of the figure.
Defaults to ZAxisAPI(name="Intensity", unit="a.u.").
"""
self.incident_energy = incident_energy
self.emission_energy = emission_energy
self.rixs_map = rixs_map
self.x_axis = x_axis
self.y_axis = y_axis
self.z_axis = z_axis
self.initialize_figure_size(size)
def initialize_figure_size(self, size: SizeRatioAPI) -> None:
"""Initialize the size of the figure.
Args:
size (SizeRatioAPI): Size of the figure.
"""
self.rixs_width = int(size.size[0] * size.ratio_rixs[0])
self.rixs_height = int(size.size[1] * size.ratio_rixs[1])
self.xas_width = int(size.size[0] * size.ratio_xas[0])
self.xas_height = int(size.size[1] * size.ratio_xas[1])
self.xes_width = int(size.size[0] * size.ratio_xes[0])
self.xes_height = int(size.size[1] * size.ratio_xes[1])
def create_rixs(
self,
colorscale: str = "Viridis",
opacity: float = 0.9,
template: Optional[str] = None,
) -> go.Figure:
"""Create the RIXS figure.
Args:
colorscale (str, optional): Color scale. Defaults to "Viridis".
opacity (float, optional): Opacity of the surface. Defaults to 0.9.
template (str, optional): Template of the figure. Defaults to None.
Returns:
go.Figure: RIXS figure.
"""
fig = go.Figure(
data=[
go.Surface(
x=self.incident_energy,
y=self.emission_energy,
z=self.rixs_map,
colorscale=colorscale,
opacity=opacity,
contours_z=dict(
show=True,
usecolormap=True,
highlightcolor="limegreen",
project_z=True,
),
)
],
)
fig.update_layout(
autosize=True,
width=self.rixs_width,
height=self.rixs_height,
scene=dict(
xaxis_title=DataFramePlot.title_text(
name=self.x_axis.name, unit=self.x_axis.unit
),
yaxis_title=DataFramePlot.title_text(
name=self.y_axis.name, unit=self.y_axis.unit
),
zaxis_title=DataFramePlot.title_text(
name=self.z_axis.name, unit=self.z_axis.unit
),
aspectmode="cube",
),
template=template,
)
fig.update_traces(
contours_z=dict(
show=True, usecolormap=True, highlightcolor="limegreen", project_z=True
)
)
return fig
def create_xes(
self,
x: NDArray[np.float64],
y: NDArray[np.float64],
template: Optional[str] = None,
) -> go.Figure:
"""Create the XES figure.
Args:
x (NDArray[np.float64]): X-axis of the figure.
y (NDArray[np.float64]): Y-axis of the figure.
template (str, optional): Template of the figure. Defaults to None.
Returns:
go.Figure: XES figure.
"""
fig = px.line(x=x, y=y, template=template)
fig.update_layout(
autosize=True,
width=self.xes_width,
height=self.xes_height,
)
# Udate the xaxis title
fig.update_xaxes(
title_text=DataFramePlot.title_text(
name=self.y_axis.name, unit=self.y_axis.unit
)
)
# Update the yaxis title
fig.update_yaxes(
title_text=DataFramePlot.title_text(
name=self.z_axis.name, unit=self.z_axis.unit
)
)
return fig
def create_xas(
self,
x: NDArray[np.float64],
y: NDArray[np.float64],
template: Optional[str] = None,
) -> go.Figure:
"""Create the XAS figure.
Args:
x (NDArray[np.float64]): X-axis of the figure.
y (NDArray[np.float64]): Y-axis of the figure.
template (str, optional): Template of the figure. Defaults to None.
Returns:
go.Figure: XAS figure.
"""
fig = px.line(x=x, y=y, template=template)
fig.update_layout(
autosize=True,
width=self.xas_width,
height=self.xas_height,
)
fig.update_xaxes(
title_text=DataFramePlot.title_text(
name=self.x_axis.name, unit=self.x_axis.unit
)
)
fig.update_yaxes(
title_text=DataFramePlot.title_text(
name=self.z_axis.name, unit=self.z_axis.unit
)
)
return fig
__init__(incident_energy, emission_energy, rixs_map, size=SizeRatioAPI(size=(500, 500), ratio_rixs=(2, 2), ratio_xes=(3, 1), ratio_xas=(3, 1)), x_axis=XAxisAPI(name='Incident Energy', unit='eV'), y_axis=YAxisAPI(name='Emission Energy', unit='eV'), z_axis=ZAxisAPI(name='Intensity', unit='a.u.'))
¶
Initialize the RIXS figure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
incident_energy | NDArray[np.float64] | Incident energy. | required |
emission_energy | NDArray[np.float64] | Emission energy. | required |
rixs_map | NDArray[np.float64] | RIXS data as a 2D array. | required |
size | SizeRatioAPI | Size of the figure. Defaults to SizeRatioAPI(size=(500, 500), ratio_rixs=(2, 2), ratio_xes=(3, 1), ratio_xas=(3, 1)). | SizeRatioAPI(size=(500, 500), ratio_rixs=(2, 2), ratio_xes=(3, 1), ratio_xas=(3, 1)) |
x_axis | XAxisAPI | X-Axis of the figure. Defaults to XAxisAPI(name="Incident Energy", unit="eV"). | XAxisAPI(name='Incident Energy', unit='eV') |
y_axis | YAxisAPI | Y-Axis of the figure. Defaults to YAxisAPI(name="Emission Energy", unit="eV"). | YAxisAPI(name='Emission Energy', unit='eV') |
z_axis | ZAxisAPI | Z-Axis of the figure. Defaults to ZAxisAPI(name="Intensity", unit="a.u."). | ZAxisAPI(name='Intensity', unit='a.u.') |
Source code in spectrafit/plugins/rixs_visualizer.py
def __init__(
self,
incident_energy: NDArray[np.float64],
emission_energy: NDArray[np.float64],
rixs_map: NDArray[np.float64],
size: SizeRatioAPI = SizeRatioAPI(
size=(500, 500),
ratio_rixs=(2, 2),
ratio_xes=(3, 1),
ratio_xas=(3, 1),
),
x_axis: XAxisAPI = XAxisAPI(name="Incident Energy", unit="eV"),
y_axis: YAxisAPI = YAxisAPI(name="Emission Energy", unit="eV"),
z_axis: ZAxisAPI = ZAxisAPI(name="Intensity", unit="a.u."),
):
"""Initialize the RIXS figure.
Args:
incident_energy (NDArray[np.float64]): Incident energy.
emission_energy (NDArray[np.float64]): Emission energy.
rixs_map (NDArray[np.float64]): RIXS data as a 2D array.
size (SizeRatioAPI, optional): Size of the figure.
Defaults to SizeRatioAPI(size=(500, 500), ratio_rixs=(2, 2),
ratio_xes=(3, 1), ratio_xas=(3, 1)).
x_axis (XAxisAPI, optional): X-Axis of the figure.
Defaults to XAxisAPI(name="Incident Energy", unit="eV").
y_axis (YAxisAPI, optional): Y-Axis of the figure.
Defaults to YAxisAPI(name="Emission Energy", unit="eV").
z_axis (ZAxisAPI, optional): Z-Axis of the figure.
Defaults to ZAxisAPI(name="Intensity", unit="a.u.").
"""
self.incident_energy = incident_energy
self.emission_energy = emission_energy
self.rixs_map = rixs_map
self.x_axis = x_axis
self.y_axis = y_axis
self.z_axis = z_axis
self.initialize_figure_size(size)
create_rixs(colorscale='Viridis', opacity=0.9, template=None)
¶
Create the RIXS figure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
colorscale | str | Color scale. Defaults to "Viridis". | 'Viridis' |
opacity | float | Opacity of the surface. Defaults to 0.9. | 0.9 |
template | str | Template of the figure. Defaults to None. | None |
Returns:
Type | Description |
---|---|
go.Figure | go.Figure: RIXS figure. |
Source code in spectrafit/plugins/rixs_visualizer.py
def create_rixs(
self,
colorscale: str = "Viridis",
opacity: float = 0.9,
template: Optional[str] = None,
) -> go.Figure:
"""Create the RIXS figure.
Args:
colorscale (str, optional): Color scale. Defaults to "Viridis".
opacity (float, optional): Opacity of the surface. Defaults to 0.9.
template (str, optional): Template of the figure. Defaults to None.
Returns:
go.Figure: RIXS figure.
"""
fig = go.Figure(
data=[
go.Surface(
x=self.incident_energy,
y=self.emission_energy,
z=self.rixs_map,
colorscale=colorscale,
opacity=opacity,
contours_z=dict(
show=True,
usecolormap=True,
highlightcolor="limegreen",
project_z=True,
),
)
],
)
fig.update_layout(
autosize=True,
width=self.rixs_width,
height=self.rixs_height,
scene=dict(
xaxis_title=DataFramePlot.title_text(
name=self.x_axis.name, unit=self.x_axis.unit
),
yaxis_title=DataFramePlot.title_text(
name=self.y_axis.name, unit=self.y_axis.unit
),
zaxis_title=DataFramePlot.title_text(
name=self.z_axis.name, unit=self.z_axis.unit
),
aspectmode="cube",
),
template=template,
)
fig.update_traces(
contours_z=dict(
show=True, usecolormap=True, highlightcolor="limegreen", project_z=True
)
)
return fig
create_xas(x, y, template=None)
¶
Create the XAS figure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x | NDArray[np.float64] | X-axis of the figure. | required |
y | NDArray[np.float64] | Y-axis of the figure. | required |
template | str | Template of the figure. Defaults to None. | None |
Returns:
Type | Description |
---|---|
go.Figure | go.Figure: XAS figure. |
Source code in spectrafit/plugins/rixs_visualizer.py
def create_xas(
self,
x: NDArray[np.float64],
y: NDArray[np.float64],
template: Optional[str] = None,
) -> go.Figure:
"""Create the XAS figure.
Args:
x (NDArray[np.float64]): X-axis of the figure.
y (NDArray[np.float64]): Y-axis of the figure.
template (str, optional): Template of the figure. Defaults to None.
Returns:
go.Figure: XAS figure.
"""
fig = px.line(x=x, y=y, template=template)
fig.update_layout(
autosize=True,
width=self.xas_width,
height=self.xas_height,
)
fig.update_xaxes(
title_text=DataFramePlot.title_text(
name=self.x_axis.name, unit=self.x_axis.unit
)
)
fig.update_yaxes(
title_text=DataFramePlot.title_text(
name=self.z_axis.name, unit=self.z_axis.unit
)
)
return fig
create_xes(x, y, template=None)
¶
Create the XES figure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x | NDArray[np.float64] | X-axis of the figure. | required |
y | NDArray[np.float64] | Y-axis of the figure. | required |
template | str | Template of the figure. Defaults to None. | None |
Returns:
Type | Description |
---|---|
go.Figure | go.Figure: XES figure. |
Source code in spectrafit/plugins/rixs_visualizer.py
def create_xes(
self,
x: NDArray[np.float64],
y: NDArray[np.float64],
template: Optional[str] = None,
) -> go.Figure:
"""Create the XES figure.
Args:
x (NDArray[np.float64]): X-axis of the figure.
y (NDArray[np.float64]): Y-axis of the figure.
template (str, optional): Template of the figure. Defaults to None.
Returns:
go.Figure: XES figure.
"""
fig = px.line(x=x, y=y, template=template)
fig.update_layout(
autosize=True,
width=self.xes_width,
height=self.xes_height,
)
# Udate the xaxis title
fig.update_xaxes(
title_text=DataFramePlot.title_text(
name=self.y_axis.name, unit=self.y_axis.unit
)
)
# Update the yaxis title
fig.update_yaxes(
title_text=DataFramePlot.title_text(
name=self.z_axis.name, unit=self.z_axis.unit
)
)
return fig
initialize_figure_size(size)
¶
Initialize the size of the figure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
size | SizeRatioAPI | Size of the figure. | required |
Source code in spectrafit/plugins/rixs_visualizer.py
def initialize_figure_size(self, size: SizeRatioAPI) -> None:
"""Initialize the size of the figure.
Args:
size (SizeRatioAPI): Size of the figure.
"""
self.rixs_width = int(size.size[0] * size.ratio_rixs[0])
self.rixs_height = int(size.size[1] * size.ratio_rixs[1])
self.xas_width = int(size.size[0] * size.ratio_xas[0])
self.xas_height = int(size.size[1] * size.ratio_xas[1])
self.xes_width = int(size.size[0] * size.ratio_xes[0])
self.xes_height = int(size.size[1] * size.ratio_xes[1])
RIXSVisualizer
¶
RIXS Visualizer. This class is used to visualize RIXS data.
Source code in spectrafit/plugins/rixs_visualizer.py
class RIXSVisualizer:
"""RIXS Visualizer. This class is used to visualize RIXS data."""
def get_args(self) -> Dict[str, Any]:
"""Get the arguments from the command line.
Returns:
Dict[str, Any]: Return the input file arguments as a dictionary without
additional information beyond the command line arguments.
"""
parser = argparse.ArgumentParser(
description="`RIXS-Visualizer` is a simple RIXS plane viewer, which "
"allows to visualize RIXS data in a 2D plane."
)
parser.add_argument(
"infile",
type=Path,
help="The input file. This can be a json, toml, npy, or npz file.",
)
return vars(parser.parse_args())
@staticmethod
def load_data(infile: Path) -> RIXSModelAPI:
"""Load the data from the input file.
Args:
infile (Path): The input file path. This can be a json, toml, npy, or npz
file.
Raises:
ValueError: If the file type is not supported.
Returns:
RIXSModelAPI: The data as a pydantic model object with the following
attributes: incident_energy, emission_energy, and rixs_map. The
incident_energy and emission_energy are 1D arrays, and the rixs_map is
a 2D array.
"""
if infile.suffix == ".npy":
data = np.load(infile, allow_pickle=True).item()
elif infile.suffix == ".npz":
data = np.load(infile, allow_pickle=True)
elif infile.suffix == ".json":
with open(infile, encoding="utf-8") as f:
data = json.load(f)
elif infile.suffix in {".toml", ".lock"}:
with open(infile, "rb") as f:
data = tomli.load(f)
else:
raise ValueError(f"File type {infile.suffix} is not supported.")
return RIXSModelAPI(
incident_energy=np.array(data["incident_energy"]),
emission_energy=np.array(data["emission_energy"]),
rixs_map=np.array(data["rixs_map"]),
)
def __call__(self) -> None: # pragma: no cover
"""Run the RIXS Visualizer."""
app = RIXSApp(**self.load_data(self.get_args()["infile"]).dict())
app.app_run()
__call__()
¶
Run the RIXS Visualizer.
Source code in spectrafit/plugins/rixs_visualizer.py
def __call__(self) -> None: # pragma: no cover
"""Run the RIXS Visualizer."""
app = RIXSApp(**self.load_data(self.get_args()["infile"]).dict())
app.app_run()
get_args()
¶
Get the arguments from the command line.
Returns:
Type | Description |
---|---|
Dict[str, Any] | Dict[str, Any]: Return the input file arguments as a dictionary without additional information beyond the command line arguments. |
Source code in spectrafit/plugins/rixs_visualizer.py
def get_args(self) -> Dict[str, Any]:
"""Get the arguments from the command line.
Returns:
Dict[str, Any]: Return the input file arguments as a dictionary without
additional information beyond the command line arguments.
"""
parser = argparse.ArgumentParser(
description="`RIXS-Visualizer` is a simple RIXS plane viewer, which "
"allows to visualize RIXS data in a 2D plane."
)
parser.add_argument(
"infile",
type=Path,
help="The input file. This can be a json, toml, npy, or npz file.",
)
return vars(parser.parse_args())
load_data(infile)
staticmethod
¶
Load the data from the input file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
infile | Path | The input file path. This can be a json, toml, npy, or npz file. | required |
Raises:
Type | Description |
---|---|
ValueError | If the file type is not supported. |
Returns:
Name | Type | Description |
---|---|---|
RIXSModelAPI | RIXSModelAPI | The data as a pydantic model object with the following attributes: incident_energy, emission_energy, and rixs_map. The incident_energy and emission_energy are 1D arrays, and the rixs_map is a 2D array. |
Source code in spectrafit/plugins/rixs_visualizer.py
@staticmethod
def load_data(infile: Path) -> RIXSModelAPI:
"""Load the data from the input file.
Args:
infile (Path): The input file path. This can be a json, toml, npy, or npz
file.
Raises:
ValueError: If the file type is not supported.
Returns:
RIXSModelAPI: The data as a pydantic model object with the following
attributes: incident_energy, emission_energy, and rixs_map. The
incident_energy and emission_energy are 1D arrays, and the rixs_map is
a 2D array.
"""
if infile.suffix == ".npy":
data = np.load(infile, allow_pickle=True).item()
elif infile.suffix == ".npz":
data = np.load(infile, allow_pickle=True)
elif infile.suffix == ".json":
with open(infile, encoding="utf-8") as f:
data = json.load(f)
elif infile.suffix in {".toml", ".lock"}:
with open(infile, "rb") as f:
data = tomli.load(f)
else:
raise ValueError(f"File type {infile.suffix} is not supported.")
return RIXSModelAPI(
incident_energy=np.array(data["incident_energy"]),
emission_energy=np.array(data["emission_energy"]),
rixs_map=np.array(data["rixs_map"]),
)
command_line_runner()
¶
Run the RIXS Visualizer from the command line.
Source code in spectrafit/plugins/rixs_visualizer.py
def command_line_runner() -> None:
"""Run the RIXS Visualizer from the command line."""
RIXSVisualizer()()