Skip to content

Jupyter-Notebook

About the Notebook API

The Notebook API is a new feature in the v0.12.0 release of SpectraFit with major focus on working with Jupyter Notebooks.

The Notebook API is a work in progress and is subject to change.

Jupyter Notebook plugin for SpectraFit.

DataFrameDisplay

Class for displaying a dataframe in different ways.

Source code in spectrafit/plugins/notebook.py
Python
class DataFrameDisplay:
    """Class for displaying a dataframe in different ways."""

    def df_display(self, df: pd.DataFrame, mode: Optional[str] = None) -> Optional[Any]:
        """Call the DataframeDisplay class.

        !!! info "About `df_display`"

            This function is used to display a dataframe in two different ways.

            1. Regular display mode:
                1. Via `IPython.display` for regular sliced displaying of the dataframe
                   in the notebook.
                2. Via `IPython.display` as Markdown for regular displaying of the
                    complete dataframe in the notebook.
            2. Interactive display mode:
                1. Via `itables` for interactive displaying of the dataframe in the
                    notebook, which allows for sorting, filtering, and jumping. For
                    more information see [itables](https://github.com/mwouts/itables).
                2. Via `dtale` for interactive displaying of the dataframe in the
                    notebook, which allows advanced data analysis of the dataframe in
                    an external window. For more information see
                    [dtale](https://github.com/man-group/dtale).

        Args:
            df (pd.DataFrame): Dataframe to display.
            mode (str, Optional): Display mode. Defaults to None.

        Raises:
            ValueError: Raises ValueError if mode of displaying is not supported.

        Returns:
            Optional[Any]: Returns the dtale object for plotting in the Jupyter
                 notebook, if mode is `dtale`.
        """
        if mode == "regular":
            self.regular_display(df=df)
        elif mode == "markdown":
            self.markdown_display(df=df)
        elif mode == "interactive":
            self.interactive_display(df=df)
        elif mode == "dtale":
            return self.dtale_display(df=df)
        elif mode is not None:
            raise ValueError(
                f"Invalid mode: {mode}. "
                "Valid modes are: regular, interactive, dtale, markdown."
            )
        return None

    @staticmethod
    def regular_display(df: pd.DataFrame) -> None:
        """Display the dataframe in a regular way.

        Args:
            df (pd.DataFrame): Dataframe to display.
        """
        display(df)

    @staticmethod
    def interactive_display(df: pd.DataFrame) -> None:
        """Display the dataframe in an interactive way.

        Args:
            df (pd.DataFrame): Dataframe to display.
        """
        itables_show(df)

    @staticmethod
    def dtale_display(df: pd.DataFrame) -> Any:
        """Display the dataframe in a dtale way.

        Args:
            df (pd.DataFrame): Dataframe to display.

        Returns:
            Any: Returns the dtale object for plotting in the Jupyter notebook.
        """
        return dtale_show(df)

    @staticmethod
    def markdown_display(df: pd.DataFrame) -> None:
        """Display the dataframe in a markdown way.

        Args:
            df (pd.DataFrame): Dataframe to display.
        """
        display_markdown(df.to_markdown(), raw=True)

df_display(df, mode=None)

Call the DataframeDisplay class.

About df_display

This function is used to display a dataframe in two different ways.

  1. Regular display mode:
    1. Via IPython.display for regular sliced displaying of the dataframe in the notebook.
    2. Via IPython.display as Markdown for regular displaying of the complete dataframe in the notebook.
  2. Interactive display mode:
    1. Via itables for interactive displaying of the dataframe in the notebook, which allows for sorting, filtering, and jumping. For more information see itables.
    2. Via dtale for interactive displaying of the dataframe in the notebook, which allows advanced data analysis of the dataframe in an external window. For more information see dtale.

Parameters:

Name Type Description Default
df DataFrame

Dataframe to display.

required
mode (str, Optional)

Display mode. Defaults to None.

None

Raises:

Type Description
ValueError

Raises ValueError if mode of displaying is not supported.

Returns:

Type Description
Optional[Any]

Optional[Any]: Returns the dtale object for plotting in the Jupyter notebook, if mode is dtale.

Source code in spectrafit/plugins/notebook.py
Python
def df_display(self, df: pd.DataFrame, mode: Optional[str] = None) -> Optional[Any]:
    """Call the DataframeDisplay class.

    !!! info "About `df_display`"

        This function is used to display a dataframe in two different ways.

        1. Regular display mode:
            1. Via `IPython.display` for regular sliced displaying of the dataframe
               in the notebook.
            2. Via `IPython.display` as Markdown for regular displaying of the
                complete dataframe in the notebook.
        2. Interactive display mode:
            1. Via `itables` for interactive displaying of the dataframe in the
                notebook, which allows for sorting, filtering, and jumping. For
                more information see [itables](https://github.com/mwouts/itables).
            2. Via `dtale` for interactive displaying of the dataframe in the
                notebook, which allows advanced data analysis of the dataframe in
                an external window. For more information see
                [dtale](https://github.com/man-group/dtale).

    Args:
        df (pd.DataFrame): Dataframe to display.
        mode (str, Optional): Display mode. Defaults to None.

    Raises:
        ValueError: Raises ValueError if mode of displaying is not supported.

    Returns:
        Optional[Any]: Returns the dtale object for plotting in the Jupyter
             notebook, if mode is `dtale`.
    """
    if mode == "regular":
        self.regular_display(df=df)
    elif mode == "markdown":
        self.markdown_display(df=df)
    elif mode == "interactive":
        self.interactive_display(df=df)
    elif mode == "dtale":
        return self.dtale_display(df=df)
    elif mode is not None:
        raise ValueError(
            f"Invalid mode: {mode}. "
            "Valid modes are: regular, interactive, dtale, markdown."
        )
    return None

dtale_display(df) staticmethod

Display the dataframe in a dtale way.

Parameters:

Name Type Description Default
df DataFrame

Dataframe to display.

required

Returns:

Name Type Description
Any Any

Returns the dtale object for plotting in the Jupyter notebook.

Source code in spectrafit/plugins/notebook.py
Python
@staticmethod
def dtale_display(df: pd.DataFrame) -> Any:
    """Display the dataframe in a dtale way.

    Args:
        df (pd.DataFrame): Dataframe to display.

    Returns:
        Any: Returns the dtale object for plotting in the Jupyter notebook.
    """
    return dtale_show(df)

interactive_display(df) staticmethod

Display the dataframe in an interactive way.

Parameters:

Name Type Description Default
df DataFrame

Dataframe to display.

required
Source code in spectrafit/plugins/notebook.py
Python
@staticmethod
def interactive_display(df: pd.DataFrame) -> None:
    """Display the dataframe in an interactive way.

    Args:
        df (pd.DataFrame): Dataframe to display.
    """
    itables_show(df)

markdown_display(df) staticmethod

Display the dataframe in a markdown way.

Parameters:

Name Type Description Default
df DataFrame

Dataframe to display.

required
Source code in spectrafit/plugins/notebook.py
Python
@staticmethod
def markdown_display(df: pd.DataFrame) -> None:
    """Display the dataframe in a markdown way.

    Args:
        df (pd.DataFrame): Dataframe to display.
    """
    display_markdown(df.to_markdown(), raw=True)

regular_display(df) staticmethod

Display the dataframe in a regular way.

Parameters:

Name Type Description Default
df DataFrame

Dataframe to display.

required
Source code in spectrafit/plugins/notebook.py
Python
@staticmethod
def regular_display(df: pd.DataFrame) -> None:
    """Display the dataframe in a regular way.

    Args:
        df (pd.DataFrame): Dataframe to display.
    """
    display(df)

DataFramePlot

Class to plot a dataframe.

Source code in spectrafit/plugins/notebook.py
Python
class DataFramePlot:
    """Class to plot a dataframe."""

    def plot_2dataframes(
        self,
        args_plot: PlotAPI,
        df_1: pd.DataFrame,
        df_2: Optional[pd.DataFrame] = None,
    ) -> None:
        """Plot two dataframes.

        !!! info "About the plot"

            The plot is a combination of two plots. The first plot can be the
            residual plot of a fit or the _modified_ data. The second plot can be the
            fit or the original data.

        !!! missing "`line_dash_map`"

            Currently, the `line_dash_map` is not working, and the dash is not
            plotted. This is likely due to the columns not being labeled in the
            dataframe.

        Args:
            args_plot (PlotAPI): PlotAPI object for the settings of the plot.
            df_1 (pd.DataFrame): First dataframe to plot, which will generate
                a fit plot with residual plot. The ratio is 70% to 20% with
                10% space in between.
            df_2 (Optional[pd.DataFrame], optional): Second optional dataframe to
                plot for comparison. In this case, the ratio between the first
                and second plot will be the same. Defaults to None.
        """
        if df_2 is None:
            fig = self._plot_single_dataframe(args_plot, df_1)
        else:
            fig = self._plot_two_dataframes(args_plot, df_1, df_2)

        fig.show(
            config={
                "toImageButtonOptions": {
                    "format": "png",
                    "filename": "plot_of_2_dataframes",
                    "scale": 4,
                }
            }
        )

    def _plot_single_dataframe(self, args_plot: PlotAPI, df: pd.DataFrame) -> Figure:
        """Plot a single dataframe with residuals."""
        fig = make_subplots(
            rows=2, cols=1, shared_xaxes=True, shared_yaxes=True, vertical_spacing=0.05
        )

        residual_fig = self._create_residual_plot(df, args_plot)
        fit_fig = self._create_fit_plot(df, args_plot)

        for trace in residual_fig["data"]:
            fig.add_trace(trace, row=1, col=1)
        for trace in fit_fig["data"]:
            fig.add_trace(trace, row=2, col=1)

        self._update_plot_layout(fig, args_plot, df_2_provided=False)
        return fig

    def _plot_two_dataframes(
        self, args_plot: PlotAPI, df_1: pd.DataFrame, df_2: pd.DataFrame
    ) -> Figure:
        """Plot two dataframes for comparison."""
        fig = make_subplots(
            rows=2, cols=1, shared_xaxes=True, shared_yaxes=True, vertical_spacing=0.05
        )

        fig1 = px.line(df_1, x=args_plot.x, y=args_plot.y)
        fig2 = px.line(df_2, x=args_plot.x, y=args_plot.y)

        for trace in fig1["data"]:
            fig.add_trace(trace, row=1, col=1)
        for trace in fig2["data"]:
            fig.add_trace(trace, row=2, col=1)

        self._update_plot_layout(fig, args_plot, df_2_provided=True)
        return fig

    def _create_residual_plot(self, df: pd.DataFrame, args_plot: PlotAPI) -> Figure:
        """Create the residual plot."""
        return px.line(
            df,
            x=ColumnNamesAPI().energy,
            y=ColumnNamesAPI().residual,
            color_discrete_sequence=[args_plot.color.residual],
        )

    def _create_fit_plot(self, df: pd.DataFrame, args_plot: PlotAPI) -> Figure:
        """Create the fit plot."""
        y_columns = df.columns.drop(
            [ColumnNamesAPI().energy, ColumnNamesAPI().residual]
        )
        color_map = {
            ColumnNamesAPI().intensity: args_plot.color.intensity,
            ColumnNamesAPI().fit: args_plot.color.fit,
            **{
                key: args_plot.color.components
                for key in y_columns.drop(
                    [ColumnNamesAPI().intensity, ColumnNamesAPI().fit]
                )
            },
        }
        line_dash_map = {
            ColumnNamesAPI().intensity: "solid",
            ColumnNamesAPI().fit: "longdash",
            **{
                key: "dash"
                for key in y_columns.drop(
                    [ColumnNamesAPI().intensity, ColumnNamesAPI().fit]
                )
            },
        }
        return px.line(
            df,
            x=ColumnNamesAPI().energy,
            y=y_columns,
            color_discrete_map=color_map,
            line_dash_map=line_dash_map,
        )

    def _update_plot_layout(
        self, fig: Figure, args_plot: PlotAPI, df_2_provided: bool
    ) -> None:
        """Update the plot layout."""
        height = args_plot.size[1][0]
        self.update_layout_axes(fig, args_plot, height)

        xaxis_title = self.title_text(
            name=args_plot.xaxis_title.name, unit=args_plot.xaxis_title.unit
        )
        yaxis_title = self.title_text(
            name=args_plot.yaxis_title.name, unit=args_plot.yaxis_title.unit
        )

        fig.update_xaxes(title_text=xaxis_title, row=1, col=1)
        fig.update_xaxes(title_text=xaxis_title, row=2, col=1)

        if not df_2_provided:
            residual_title = self.title_text(
                name=args_plot.residual_title.name, unit=args_plot.residual_title.unit
            )
            fig["layout"]["yaxis1"].update(domain=[0.8, 1])
            fig["layout"]["yaxis2"].update(domain=[0, 0.7])
            fig.update_yaxes(title_text=residual_title, row=1, col=1)
        else:
            fig.update_yaxes(title_text=yaxis_title, row=1, col=1)

        fig.update_yaxes(title_text=yaxis_title, row=2, col=1)

    def plot_dataframe(self, args_plot: PlotAPI, df: pd.DataFrame) -> None:
        """Plot the dataframe according to the PlotAPI arguments.

        Args:
            args_plot (PlotAPI): PlotAPI object for the settings of the plot.
            df (pd.DataFrame): Dataframe to plot.
        """
        fig = px.line(df, x=args_plot.x, y=args_plot.y)
        height = args_plot.size[1][0]
        self.update_layout_axes(fig, args_plot, height)

        fig.update_xaxes(
            title_text=self.title_text(
                name=args_plot.xaxis_title.name, unit=args_plot.xaxis_title.unit
            )
        )
        fig.update_yaxes(
            title_text=self.title_text(
                name=args_plot.yaxis_title.name, unit=args_plot.yaxis_title.unit
            )
        )
        fig.show(
            config={
                "toImageButtonOptions": {
                    "format": "png",
                    "filename": "plot_dataframe",
                    "scale": 4,
                }
            }
        )

    def plot_global_fit(self, args_plot: PlotAPI, df: pd.DataFrame) -> None:
        """Plot the global dataframe according to the PlotAPI arguments.

        Args:
            args_plot (PlotAPI): PlotAPI object for the settings of the plot.
            df (pd.DataFrame): Dataframe to plot.
        """
        num_fits = df.columns.str.startswith(ColumnNamesAPI().fit).sum()
        for i in range(1, num_fits + 1):
            cols = [col for col in df.columns if col.endswith(f"_{i}")]
            cols.append(ColumnNamesAPI().energy)
            df_subset = df[cols].rename(
                columns={
                    f"{ColumnNamesAPI().intensity}_{i}": ColumnNamesAPI().intensity,
                    f"{ColumnNamesAPI().fit}_{i}": ColumnNamesAPI().fit,
                    f"{ColumnNamesAPI().residual}_{i}": ColumnNamesAPI().residual,
                }
            )
            self.plot_2dataframes(args_plot, df_subset)

    def plot_metric(
        self,
        args_plot: PlotAPI,
        df_metric: pd.DataFrame,
        bar_criteria: Union[str, List[str]],
        line_criteria: Union[str, List[str]],
    ) -> None:
        """Plot the metric according to the PlotAPI arguments.

        Args:
            args_plot (PlotAPI): PlotAPI object for the settings of the plot.
            df_metric (pd.DataFrame): Metric dataframe to plot.
            bar_criteria (Union[str, List[str]]): Criteria to plot as bars.
            line_criteria (Union[str, List[str]]): Criteria to plot as lines.
        """
        fig = make_subplots(specs=[[{"secondary_y": True}]])
        fig_bar = px.bar(
            df_metric,
            y=bar_criteria,
            color_discrete_sequence=args_plot.color.bars,
        )
        fig_line = px.line(
            df_metric,
            y=line_criteria,
            color_discrete_sequence=args_plot.color.lines,
        )
        fig_line.update_traces(mode="lines+markers", yaxis="y2")

        for trace in fig_bar.data:
            fig.add_trace(trace)
        for trace in fig_line.data:
            fig.add_trace(trace)

        fig.update_layout(xaxis_type="category")
        height = args_plot.size[1][1]
        self.update_layout_axes(fig, args_plot, height)

        fig.update_xaxes(
            title_text=self.title_text(
                name=args_plot.run_title.name, unit=args_plot.run_title.unit
            )
        )
        fig.update_yaxes(
            title_text=self.title_text(
                name=args_plot.metric_title.name_0, unit=args_plot.metric_title.unit_0
            ),
            secondary_y=False,
        )
        fig.update_yaxes(
            title_text=self.title_text(
                name=args_plot.metric_title.name_1, unit=args_plot.metric_title.unit_1
            ),
            secondary_y=True,
        )
        fig.show(
            config={
                "toImageButtonOptions": {
                    "format": "png",
                    "filename": "plot_metric",
                    "scale": 4,
                }
            }
        )

    def update_layout_axes(
        self, fig: Figure, args_plot: PlotAPI, height: int
    ) -> Figure:
        """Update the layout of the plot.

        Args:
            fig (Figure): Figure to update.
            args_plot (PlotAPI): PlotAPI object for the settings of the plot.
            height (int): Height of the plot.

        Returns:
            Figure: Updated figure.
        """
        fig.update_layout(
            title=args_plot.title,
            legend_title=args_plot.legend_title,
            legend=args_plot.legend.model_dump(),
            font=args_plot.font.model_dump(),
            showlegend=args_plot.show_legend,
            width=args_plot.size[0],
            height=height,
            paper_bgcolor=args_plot.color.paper,
            plot_bgcolor=args_plot.color.plot,
        )

        minor_ticks = self.get_minor(args_plot)

        fig.update_xaxes(
            minor=minor_ticks,
            gridcolor=args_plot.color.grid,
            linecolor=args_plot.color.line,
            zerolinecolor=args_plot.color.zero_line,
            color=args_plot.color.color,
        )
        fig.update_yaxes(
            minor=minor_ticks,
            gridcolor=args_plot.color.grid,
            linecolor=args_plot.color.line,
            zerolinecolor=args_plot.color.zero_line,
            color=args_plot.color.color,
        )
        return fig

    @staticmethod
    def title_text(name: str, unit: Optional[str] = None) -> str:
        """Return the title text.

        Args:
            name (str): Name of the variable.
            unit (Optional[str], optional): Unit of the variable. Defaults to None.

        Returns:
            str: Title text.
        """
        return f"{name} [{unit}]" if unit else name

    def get_minor(self, args_plot: PlotAPI) -> Dict[str, Union[str, bool]]:
        """Get the minor axis arguments.

        Args:
            args_plot (PlotAPI): PlotAPI object for the settings of the plot.

        Returns:
            Dict[str, Union[str, bool]]: Dictionary with the minor axis arguments.
        """
        return {
            "tickcolor": args_plot.color.ticks,
            "showgrid": args_plot.grid.show,
            "ticks": args_plot.grid.ticks,
            "griddash": args_plot.grid.dash,
        }

get_minor(args_plot)

Get the minor axis arguments.

Parameters:

Name Type Description Default
args_plot PlotAPI

PlotAPI object for the settings of the plot.

required

Returns:

Type Description
Dict[str, Union[str, bool]]

Dict[str, Union[str, bool]]: Dictionary with the minor axis arguments.

Source code in spectrafit/plugins/notebook.py
Python
def get_minor(self, args_plot: PlotAPI) -> Dict[str, Union[str, bool]]:
    """Get the minor axis arguments.

    Args:
        args_plot (PlotAPI): PlotAPI object for the settings of the plot.

    Returns:
        Dict[str, Union[str, bool]]: Dictionary with the minor axis arguments.
    """
    return {
        "tickcolor": args_plot.color.ticks,
        "showgrid": args_plot.grid.show,
        "ticks": args_plot.grid.ticks,
        "griddash": args_plot.grid.dash,
    }

plot_2dataframes(args_plot, df_1, df_2=None)

Plot two dataframes.

About the plot

The plot is a combination of two plots. The first plot can be the residual plot of a fit or the modified data. The second plot can be the fit or the original data.

line_dash_map

Currently, the line_dash_map is not working, and the dash is not plotted. This is likely due to the columns not being labeled in the dataframe.

Parameters:

Name Type Description Default
args_plot PlotAPI

PlotAPI object for the settings of the plot.

required
df_1 DataFrame

First dataframe to plot, which will generate a fit plot with residual plot. The ratio is 70% to 20% with 10% space in between.

required
df_2 Optional[DataFrame]

Second optional dataframe to plot for comparison. In this case, the ratio between the first and second plot will be the same. Defaults to None.

None
Source code in spectrafit/plugins/notebook.py
Python
def plot_2dataframes(
    self,
    args_plot: PlotAPI,
    df_1: pd.DataFrame,
    df_2: Optional[pd.DataFrame] = None,
) -> None:
    """Plot two dataframes.

    !!! info "About the plot"

        The plot is a combination of two plots. The first plot can be the
        residual plot of a fit or the _modified_ data. The second plot can be the
        fit or the original data.

    !!! missing "`line_dash_map`"

        Currently, the `line_dash_map` is not working, and the dash is not
        plotted. This is likely due to the columns not being labeled in the
        dataframe.

    Args:
        args_plot (PlotAPI): PlotAPI object for the settings of the plot.
        df_1 (pd.DataFrame): First dataframe to plot, which will generate
            a fit plot with residual plot. The ratio is 70% to 20% with
            10% space in between.
        df_2 (Optional[pd.DataFrame], optional): Second optional dataframe to
            plot for comparison. In this case, the ratio between the first
            and second plot will be the same. Defaults to None.
    """
    if df_2 is None:
        fig = self._plot_single_dataframe(args_plot, df_1)
    else:
        fig = self._plot_two_dataframes(args_plot, df_1, df_2)

    fig.show(
        config={
            "toImageButtonOptions": {
                "format": "png",
                "filename": "plot_of_2_dataframes",
                "scale": 4,
            }
        }
    )

plot_dataframe(args_plot, df)

Plot the dataframe according to the PlotAPI arguments.

Parameters:

Name Type Description Default
args_plot PlotAPI

PlotAPI object for the settings of the plot.

required
df DataFrame

Dataframe to plot.

required
Source code in spectrafit/plugins/notebook.py
Python
def plot_dataframe(self, args_plot: PlotAPI, df: pd.DataFrame) -> None:
    """Plot the dataframe according to the PlotAPI arguments.

    Args:
        args_plot (PlotAPI): PlotAPI object for the settings of the plot.
        df (pd.DataFrame): Dataframe to plot.
    """
    fig = px.line(df, x=args_plot.x, y=args_plot.y)
    height = args_plot.size[1][0]
    self.update_layout_axes(fig, args_plot, height)

    fig.update_xaxes(
        title_text=self.title_text(
            name=args_plot.xaxis_title.name, unit=args_plot.xaxis_title.unit
        )
    )
    fig.update_yaxes(
        title_text=self.title_text(
            name=args_plot.yaxis_title.name, unit=args_plot.yaxis_title.unit
        )
    )
    fig.show(
        config={
            "toImageButtonOptions": {
                "format": "png",
                "filename": "plot_dataframe",
                "scale": 4,
            }
        }
    )

plot_global_fit(args_plot, df)

Plot the global dataframe according to the PlotAPI arguments.

Parameters:

Name Type Description Default
args_plot PlotAPI

PlotAPI object for the settings of the plot.

required
df DataFrame

Dataframe to plot.

required
Source code in spectrafit/plugins/notebook.py
Python
def plot_global_fit(self, args_plot: PlotAPI, df: pd.DataFrame) -> None:
    """Plot the global dataframe according to the PlotAPI arguments.

    Args:
        args_plot (PlotAPI): PlotAPI object for the settings of the plot.
        df (pd.DataFrame): Dataframe to plot.
    """
    num_fits = df.columns.str.startswith(ColumnNamesAPI().fit).sum()
    for i in range(1, num_fits + 1):
        cols = [col for col in df.columns if col.endswith(f"_{i}")]
        cols.append(ColumnNamesAPI().energy)
        df_subset = df[cols].rename(
            columns={
                f"{ColumnNamesAPI().intensity}_{i}": ColumnNamesAPI().intensity,
                f"{ColumnNamesAPI().fit}_{i}": ColumnNamesAPI().fit,
                f"{ColumnNamesAPI().residual}_{i}": ColumnNamesAPI().residual,
            }
        )
        self.plot_2dataframes(args_plot, df_subset)

plot_metric(args_plot, df_metric, bar_criteria, line_criteria)

Plot the metric according to the PlotAPI arguments.

Parameters:

Name Type Description Default
args_plot PlotAPI

PlotAPI object for the settings of the plot.

required
df_metric DataFrame

Metric dataframe to plot.

required
bar_criteria Union[str, List[str]]

Criteria to plot as bars.

required
line_criteria Union[str, List[str]]

Criteria to plot as lines.

required
Source code in spectrafit/plugins/notebook.py
Python
def plot_metric(
    self,
    args_plot: PlotAPI,
    df_metric: pd.DataFrame,
    bar_criteria: Union[str, List[str]],
    line_criteria: Union[str, List[str]],
) -> None:
    """Plot the metric according to the PlotAPI arguments.

    Args:
        args_plot (PlotAPI): PlotAPI object for the settings of the plot.
        df_metric (pd.DataFrame): Metric dataframe to plot.
        bar_criteria (Union[str, List[str]]): Criteria to plot as bars.
        line_criteria (Union[str, List[str]]): Criteria to plot as lines.
    """
    fig = make_subplots(specs=[[{"secondary_y": True}]])
    fig_bar = px.bar(
        df_metric,
        y=bar_criteria,
        color_discrete_sequence=args_plot.color.bars,
    )
    fig_line = px.line(
        df_metric,
        y=line_criteria,
        color_discrete_sequence=args_plot.color.lines,
    )
    fig_line.update_traces(mode="lines+markers", yaxis="y2")

    for trace in fig_bar.data:
        fig.add_trace(trace)
    for trace in fig_line.data:
        fig.add_trace(trace)

    fig.update_layout(xaxis_type="category")
    height = args_plot.size[1][1]
    self.update_layout_axes(fig, args_plot, height)

    fig.update_xaxes(
        title_text=self.title_text(
            name=args_plot.run_title.name, unit=args_plot.run_title.unit
        )
    )
    fig.update_yaxes(
        title_text=self.title_text(
            name=args_plot.metric_title.name_0, unit=args_plot.metric_title.unit_0
        ),
        secondary_y=False,
    )
    fig.update_yaxes(
        title_text=self.title_text(
            name=args_plot.metric_title.name_1, unit=args_plot.metric_title.unit_1
        ),
        secondary_y=True,
    )
    fig.show(
        config={
            "toImageButtonOptions": {
                "format": "png",
                "filename": "plot_metric",
                "scale": 4,
            }
        }
    )

title_text(name, unit=None) staticmethod

Return the title text.

Parameters:

Name Type Description Default
name str

Name of the variable.

required
unit Optional[str]

Unit of the variable. Defaults to None.

None

Returns:

Name Type Description
str str

Title text.

Source code in spectrafit/plugins/notebook.py
Python
@staticmethod
def title_text(name: str, unit: Optional[str] = None) -> str:
    """Return the title text.

    Args:
        name (str): Name of the variable.
        unit (Optional[str], optional): Unit of the variable. Defaults to None.

    Returns:
        str: Title text.
    """
    return f"{name} [{unit}]" if unit else name

update_layout_axes(fig, args_plot, height)

Update the layout of the plot.

Parameters:

Name Type Description Default
fig Figure

Figure to update.

required
args_plot PlotAPI

PlotAPI object for the settings of the plot.

required
height int

Height of the plot.

required

Returns:

Name Type Description
Figure Figure

Updated figure.

Source code in spectrafit/plugins/notebook.py
Python
def update_layout_axes(
    self, fig: Figure, args_plot: PlotAPI, height: int
) -> Figure:
    """Update the layout of the plot.

    Args:
        fig (Figure): Figure to update.
        args_plot (PlotAPI): PlotAPI object for the settings of the plot.
        height (int): Height of the plot.

    Returns:
        Figure: Updated figure.
    """
    fig.update_layout(
        title=args_plot.title,
        legend_title=args_plot.legend_title,
        legend=args_plot.legend.model_dump(),
        font=args_plot.font.model_dump(),
        showlegend=args_plot.show_legend,
        width=args_plot.size[0],
        height=height,
        paper_bgcolor=args_plot.color.paper,
        plot_bgcolor=args_plot.color.plot,
    )

    minor_ticks = self.get_minor(args_plot)

    fig.update_xaxes(
        minor=minor_ticks,
        gridcolor=args_plot.color.grid,
        linecolor=args_plot.color.line,
        zerolinecolor=args_plot.color.zero_line,
        color=args_plot.color.color,
    )
    fig.update_yaxes(
        minor=minor_ticks,
        gridcolor=args_plot.color.grid,
        linecolor=args_plot.color.line,
        zerolinecolor=args_plot.color.zero_line,
        color=args_plot.color.color,
    )
    return fig

ExportReport

Bases: SolverResults

Class for exporting results as toml.

Source code in spectrafit/plugins/notebook.py
Python
class ExportReport(SolverResults):
    """Class for exporting results as toml."""

    def __init__(
        self,
        description: DescriptionAPI,
        initial_model: List[Dict[str, Dict[str, Dict[str, Any]]]],
        pre_processing: DataPreProcessingAPI,
        settings_solver_models: SolverModelsAPI,
        fname: FnameAPI,
        args_out: Dict[str, Any],
        df_org: pd.DataFrame,
        df_fit: pd.DataFrame,
        df_pre: pd.DataFrame = pd.DataFrame(),
    ) -> None:
        """Initialize the ExportReport class.

        Args:
            description (DescriptionAPI): Description of the fit project.
            initial_model (List[Dict[str, Dict[str, Dict[str, Any]]]]): Initial model
                 for the fit.
            pre_processing (DataPreProcessingAPI): Data pre-processing settings.
            settings_solver_models (SolverModelsAPI): Solver models settings.
            fname (FnameAPI): Filename of the fit project including the path, prefix,
                 and suffix.
            args_out (Dict[str, Any]): Dictionary of SpectraFit settings and results.
            df_org (pd.DataFrame): Dataframe of the original data for performing
                 the fit.
            df_fit (pd.DataFrame): Dataframe of the final fit data.
            df_pre (Optional[pd.DataFrame], optional): Dataframe of the pre-processed.
                 Defaults to pd.DataFrame().
        """
        super().__init__(args_out=args_out)
        self.description = description
        self.initial_model = initial_model
        self.pre_processing = pre_processing
        self.settings_solver_models = settings_solver_models
        self.fname = fname

        self.df_org = df_org.to_dict(orient="list")
        self.df_fit = df_fit.to_dict(orient="list")
        self.df_pre = df_pre.to_dict(orient="list")

    @property
    def make_input_contribution(self) -> InputAPI:
        """Make input contribution of the report.

        Returns:
            InputAPI: Input contribution of the report as class.
        """
        return InputAPI(
            description=self.description,
            initial_model=self.initial_model,
            pre_processing=self.pre_processing,
            method=FitMethodAPI(
                global_fitting=self.settings_global_fitting,
                confidence_interval=self.settings_conf_interval,
                configurations=self.settings_configurations,
                settings_solver_models=self.settings_solver_models.model_dump(
                    exclude_none=True
                ),
            ),
        )

    @property
    def make_solver_contribution(self) -> SolverAPI:
        """Make solver contribution of the report.

        Returns:
            SolverAPI: Solver contribution of the report as class.
        """
        return SolverAPI(
            goodness_of_fit=self.get_gof,
            regression_metrics=self.get_regression_metrics,
            descriptive_statistic=self.get_descriptive_statistic,
            linear_correlation=self.get_linear_correlation,
            component_correlation=self.get_component_correlation,
            confidence_interval=self.get_confidence_interval,
            covariance_matrix=self.get_covariance_matrix,
            variables=self.get_variables,
            errorbars=self.get_errorbars,
            computational=self.get_computational,
        )

    @property
    def make_output_contribution(self) -> OutputAPI:
        """Make output contribution of the report.

        Returns:
            OutputAPI: Output contribution of the report as class.
        """
        return OutputAPI(df_org=self.df_org, df_fit=self.df_fit, df_pre=self.df_pre)

    def __call__(self) -> Dict[str, Any]:
        """Get the complete report as dictionary.

        !!! info "About the report and `exclude_none_dictionary`"

            The report is generated by using the `ReportAPI` class, which is a
            `Pydantic`-definition of the report. The `Pydantic`-definition is
            converted to a dictionary by using the `.model_dump()` option of `Pydantic`.
            The `recursive_exclude_none` function is used to remove all `None` values
            from the dictionary, which are hidden in the nested dictionaries.

        Returns:
            Dict[str, Any]: Report as dictionary by using the `.dict()` option of
                 pydantic. `None` is excluded.
        """
        report = ReportAPI(
            input=self.make_input_contribution,
            solver=self.make_solver_contribution,
            output=self.make_output_contribution,
        ).model_dump(exclude_none=True)
        report = exclude_none_dictionary(report)
        report = transform_nested_types(report)
        return report

make_input_contribution: InputAPI property

Make input contribution of the report.

Returns:

Name Type Description
InputAPI InputAPI

Input contribution of the report as class.

make_output_contribution: OutputAPI property

Make output contribution of the report.

Returns:

Name Type Description
OutputAPI OutputAPI

Output contribution of the report as class.

make_solver_contribution: SolverAPI property

Make solver contribution of the report.

Returns:

Name Type Description
SolverAPI SolverAPI

Solver contribution of the report as class.

__call__()

Get the complete report as dictionary.

About the report and exclude_none_dictionary

The report is generated by using the ReportAPI class, which is a Pydantic-definition of the report. The Pydantic-definition is converted to a dictionary by using the .model_dump() option of Pydantic. The recursive_exclude_none function is used to remove all None values from the dictionary, which are hidden in the nested dictionaries.

Returns:

Type Description
Dict[str, Any]

Dict[str, Any]: Report as dictionary by using the .dict() option of pydantic. None is excluded.

Source code in spectrafit/plugins/notebook.py
Python
def __call__(self) -> Dict[str, Any]:
    """Get the complete report as dictionary.

    !!! info "About the report and `exclude_none_dictionary`"

        The report is generated by using the `ReportAPI` class, which is a
        `Pydantic`-definition of the report. The `Pydantic`-definition is
        converted to a dictionary by using the `.model_dump()` option of `Pydantic`.
        The `recursive_exclude_none` function is used to remove all `None` values
        from the dictionary, which are hidden in the nested dictionaries.

    Returns:
        Dict[str, Any]: Report as dictionary by using the `.dict()` option of
             pydantic. `None` is excluded.
    """
    report = ReportAPI(
        input=self.make_input_contribution,
        solver=self.make_solver_contribution,
        output=self.make_output_contribution,
    ).model_dump(exclude_none=True)
    report = exclude_none_dictionary(report)
    report = transform_nested_types(report)
    return report

__init__(description, initial_model, pre_processing, settings_solver_models, fname, args_out, df_org, df_fit, df_pre=pd.DataFrame())

Initialize the ExportReport class.

Parameters:

Name Type Description Default
description DescriptionAPI

Description of the fit project.

required
initial_model List[Dict[str, Dict[str, Dict[str, Any]]]]

Initial model for the fit.

required
pre_processing DataPreProcessingAPI

Data pre-processing settings.

required
settings_solver_models SolverModelsAPI

Solver models settings.

required
fname FnameAPI

Filename of the fit project including the path, prefix, and suffix.

required
args_out Dict[str, Any]

Dictionary of SpectraFit settings and results.

required
df_org DataFrame

Dataframe of the original data for performing the fit.

required
df_fit DataFrame

Dataframe of the final fit data.

required
df_pre Optional[DataFrame]

Dataframe of the pre-processed. Defaults to pd.DataFrame().

DataFrame()
Source code in spectrafit/plugins/notebook.py
Python
def __init__(
    self,
    description: DescriptionAPI,
    initial_model: List[Dict[str, Dict[str, Dict[str, Any]]]],
    pre_processing: DataPreProcessingAPI,
    settings_solver_models: SolverModelsAPI,
    fname: FnameAPI,
    args_out: Dict[str, Any],
    df_org: pd.DataFrame,
    df_fit: pd.DataFrame,
    df_pre: pd.DataFrame = pd.DataFrame(),
) -> None:
    """Initialize the ExportReport class.

    Args:
        description (DescriptionAPI): Description of the fit project.
        initial_model (List[Dict[str, Dict[str, Dict[str, Any]]]]): Initial model
             for the fit.
        pre_processing (DataPreProcessingAPI): Data pre-processing settings.
        settings_solver_models (SolverModelsAPI): Solver models settings.
        fname (FnameAPI): Filename of the fit project including the path, prefix,
             and suffix.
        args_out (Dict[str, Any]): Dictionary of SpectraFit settings and results.
        df_org (pd.DataFrame): Dataframe of the original data for performing
             the fit.
        df_fit (pd.DataFrame): Dataframe of the final fit data.
        df_pre (Optional[pd.DataFrame], optional): Dataframe of the pre-processed.
             Defaults to pd.DataFrame().
    """
    super().__init__(args_out=args_out)
    self.description = description
    self.initial_model = initial_model
    self.pre_processing = pre_processing
    self.settings_solver_models = settings_solver_models
    self.fname = fname

    self.df_org = df_org.to_dict(orient="list")
    self.df_fit = df_fit.to_dict(orient="list")
    self.df_pre = df_pre.to_dict(orient="list")

ExportResults

Class for exporting results as csv.

Source code in spectrafit/plugins/notebook.py
Python
class ExportResults:
    """Class for exporting results as csv."""

    def export_df(self, df: pd.DataFrame, args: FnameAPI) -> None:
        """Export the dataframe as csv.

        Args:
            df (pd.DataFrame): Dataframe to export.
            args (FnameAPI): Arguments for the file export including the path, prefix,
                 and suffix.
        """
        df.to_csv(
            self.fname2path(
                fname=args.fname,
                prefix=args.prefix,
                suffix=args.suffix,
                folder=args.folder,
            ),
            index=False,
        )

    def export_report(self, report: Dict[Any, Any], args: FnameAPI) -> None:
        """Export the results as toml file.

        Args:
            report (Dict[Any, Any]): Results as dictionary to export.
            args (FnameAPI): Arguments for the file export including the path, prefix,
                 and suffix.
        """
        with self.fname2path(
            fname=args.fname,
            prefix=args.prefix,
            suffix=args.suffix,
            folder=args.folder,
        ).open(
            "wb+",
        ) as f:
            tomli_w.dump(report, f)

    @staticmethod
    def fname2path(
        fname: str,
        suffix: str,
        prefix: Optional[str] = None,
        folder: Optional[str] = None,
    ) -> Path:
        """Translate string to Path object.

        Args:
            fname (str): Filename
            suffix (str): Name of the suffix of the file.
            prefix (Optional[str], optional): Name of the prefix of the file. Defaults
                 to None.
            folder (Optional[str], optional): Folder, where it will be saved.
                 This folders will be created, if not exist. Defaults to None.

        Returns:
            Path: Path object of the file.
        """
        if prefix:
            fname = f"{prefix}_{fname}"
        _fname = Path(fname).with_suffix(f".{suffix}")
        if folder:
            Path(folder).mkdir(parents=True, exist_ok=True)
            _fname = Path(folder) / _fname
        return _fname

export_df(df, args)

Export the dataframe as csv.

Parameters:

Name Type Description Default
df DataFrame

Dataframe to export.

required
args FnameAPI

Arguments for the file export including the path, prefix, and suffix.

required
Source code in spectrafit/plugins/notebook.py
Python
def export_df(self, df: pd.DataFrame, args: FnameAPI) -> None:
    """Export the dataframe as csv.

    Args:
        df (pd.DataFrame): Dataframe to export.
        args (FnameAPI): Arguments for the file export including the path, prefix,
             and suffix.
    """
    df.to_csv(
        self.fname2path(
            fname=args.fname,
            prefix=args.prefix,
            suffix=args.suffix,
            folder=args.folder,
        ),
        index=False,
    )

export_report(report, args)

Export the results as toml file.

Parameters:

Name Type Description Default
report Dict[Any, Any]

Results as dictionary to export.

required
args FnameAPI

Arguments for the file export including the path, prefix, and suffix.

required
Source code in spectrafit/plugins/notebook.py
Python
def export_report(self, report: Dict[Any, Any], args: FnameAPI) -> None:
    """Export the results as toml file.

    Args:
        report (Dict[Any, Any]): Results as dictionary to export.
        args (FnameAPI): Arguments for the file export including the path, prefix,
             and suffix.
    """
    with self.fname2path(
        fname=args.fname,
        prefix=args.prefix,
        suffix=args.suffix,
        folder=args.folder,
    ).open(
        "wb+",
    ) as f:
        tomli_w.dump(report, f)

fname2path(fname, suffix, prefix=None, folder=None) staticmethod

Translate string to Path object.

Parameters:

Name Type Description Default
fname str

Filename

required
suffix str

Name of the suffix of the file.

required
prefix Optional[str]

Name of the prefix of the file. Defaults to None.

None
folder Optional[str]

Folder, where it will be saved. This folders will be created, if not exist. Defaults to None.

None

Returns:

Name Type Description
Path Path

Path object of the file.

Source code in spectrafit/plugins/notebook.py
Python
@staticmethod
def fname2path(
    fname: str,
    suffix: str,
    prefix: Optional[str] = None,
    folder: Optional[str] = None,
) -> Path:
    """Translate string to Path object.

    Args:
        fname (str): Filename
        suffix (str): Name of the suffix of the file.
        prefix (Optional[str], optional): Name of the prefix of the file. Defaults
             to None.
        folder (Optional[str], optional): Folder, where it will be saved.
             This folders will be created, if not exist. Defaults to None.

    Returns:
        Path: Path object of the file.
    """
    if prefix:
        fname = f"{prefix}_{fname}"
    _fname = Path(fname).with_suffix(f".{suffix}")
    if folder:
        Path(folder).mkdir(parents=True, exist_ok=True)
        _fname = Path(folder) / _fname
    return _fname

SolverResults

Class for storing the results of the solver.

Source code in spectrafit/plugins/notebook.py
Python
class SolverResults:
    """Class for storing the results of the solver."""

    def __init__(self, args_out: Dict[str, Any]) -> None:
        """Initialize the SolverResults class.

        Args:
            args_out (Dict[str, Any]): Dictionary of SpectraFit settings and results.
        """
        self.args_out = args_out

    @property
    def settings_global_fitting(self) -> Union[bool, int]:
        """Global fitting settings.

        Returns:
            Union[bool, int]: Global fitting settings.
        """
        return self.args_out["global_"]

    @property
    def settings_configurations(self) -> Dict[str, Any]:
        """Configure settings.

        Returns:
            Dict[str, Any]: Configuration settings.
        """
        return self.args_out["fit_insights"]["configurations"]

    @property
    def get_gof(self) -> Dict[str, float]:
        """Get the goodness of fit values.

        Returns:
            Dict[str, float]: Goodness of fit values as dictionary.
        """
        return self.args_out["fit_insights"]["statistics"]

    @property
    def get_variables(self) -> Dict[str, Dict[str, float]]:
        """Get the variables of the fit.

        Returns:
            Dict[str, Dict[str, float]]: Variables of the fit.
        """
        return self.args_out["fit_insights"]["variables"]

    @property
    def get_errorbars(self) -> Dict[str, float]:
        """Get the comments about the error bars of fit values.

        Returns:
            Dict[str, float]: Comments about the error bars as dictionary or dataframe.
        """
        return self.args_out["fit_insights"]["errorbars"]

    @property
    def get_component_correlation(self) -> Dict[str, Any]:
        """Get the linear correlation of the components.

        Returns:
            Dict[str, Any]: Linear correlation of the components as dictionary.
        """
        return self.args_out["fit_insights"]["correlations"]

    @property
    def get_covariance_matrix(self) -> Dict[str, Any]:
        """Get the covariance matrix.

        Returns:
            Dict[str, Any]: Covariance matrix as dictionary.
        """
        return self.args_out["fit_insights"]["covariance_matrix"]

    @property
    def get_regression_metrics(self) -> Dict[str, Any]:
        """Get the regression metrics.

        Returns:
            Dict[str, Any]: Regression metrics as dictionary.
        """
        return self.args_out["regression_metrics"]

    @property
    def get_descriptive_statistic(self) -> Dict[str, Any]:
        """Get the descriptive statistic.

        Returns:
            Dict[str, Any]: Descriptive statistic as dictionary of the spectra, fit, and
                 components as dictionary.
        """
        return self.args_out["descriptive_statistic"]

    @property
    def get_linear_correlation(self) -> Dict[str, Any]:
        """Get the linear correlation.

        Returns:
            Dict[str, Any]: Linear correlation of the spectra, fit, and components
                 as dictionary.
        """
        return self.args_out["linear_correlation"]

    @property
    def get_computational(self) -> Dict[str, Any]:
        """Get the computational time.

        Returns:
            Dict[str, Any]: Computational time as dictionary.
        """
        return self.args_out["fit_insights"]["computational"]

    @property
    def settings_conf_interval(self) -> Union[bool, Dict[str, Any]]:
        """Confidence interval settings.

        Returns:
            Union[bool, Dict[str, Any]]: Confidence interval settings.
        """
        if isinstance(self.args_out["conf_interval"], dict):
            self.args_out["conf_interval"] = {
                key: value if value is not None else {}
                for key, value in self.args_out["conf_interval"].items()
            }
        return self.args_out["conf_interval"]

    @property
    def get_confidence_interval(self) -> Dict[Any, Any]:
        """Get the confidence interval.

        Returns:
            Dict[Any, Any]: Confidence interval as dictionary with or without the
                    confidence interval results.
        """
        if self.args_out["conf_interval"] is False:
            return {}
        return self.args_out["confidence_interval"]

    @property
    def get_current_metric(self) -> pd.DataFrame:
        """Get the current metric.

        !!! note "About the regression metrics"

            For using the regression metrics, the `regression_metrics` must be averaged
            to merge the results of the different configurations together with the
            `goodness_of_fit` and `variables` results.

        Returns:
            pd.DataFrame: Current metric based on `regression_metrics` and
            `goodness_of_fit` as dataframe.
        """
        gof = {key: [value] for key, value in self.get_gof.items()}
        reg = {
            key: [np.average(val)]
            for key, val in zip(
                self.get_regression_metrics["index"],
                self.get_regression_metrics["data"],
            )
        }
        metric = {**gof, **reg}
        return pd.DataFrame(metric)

get_component_correlation: Dict[str, Any] property

Get the linear correlation of the components.

Returns:

Type Description
Dict[str, Any]

Dict[str, Any]: Linear correlation of the components as dictionary.

get_computational: Dict[str, Any] property

Get the computational time.

Returns:

Type Description
Dict[str, Any]

Dict[str, Any]: Computational time as dictionary.

get_confidence_interval: Dict[Any, Any] property

Get the confidence interval.

Returns:

Type Description
Dict[Any, Any]

Dict[Any, Any]: Confidence interval as dictionary with or without the confidence interval results.

get_covariance_matrix: Dict[str, Any] property

Get the covariance matrix.

Returns:

Type Description
Dict[str, Any]

Dict[str, Any]: Covariance matrix as dictionary.

get_current_metric: pd.DataFrame property

Get the current metric.

About the regression metrics

For using the regression metrics, the regression_metrics must be averaged to merge the results of the different configurations together with the goodness_of_fit and variables results.

Returns:

Type Description
DataFrame

pd.DataFrame: Current metric based on regression_metrics and

DataFrame

goodness_of_fit as dataframe.

get_descriptive_statistic: Dict[str, Any] property

Get the descriptive statistic.

Returns:

Type Description
Dict[str, Any]

Dict[str, Any]: Descriptive statistic as dictionary of the spectra, fit, and components as dictionary.

get_errorbars: Dict[str, float] property

Get the comments about the error bars of fit values.

Returns:

Type Description
Dict[str, float]

Dict[str, float]: Comments about the error bars as dictionary or dataframe.

get_gof: Dict[str, float] property

Get the goodness of fit values.

Returns:

Type Description
Dict[str, float]

Dict[str, float]: Goodness of fit values as dictionary.

get_linear_correlation: Dict[str, Any] property

Get the linear correlation.

Returns:

Type Description
Dict[str, Any]

Dict[str, Any]: Linear correlation of the spectra, fit, and components as dictionary.

get_regression_metrics: Dict[str, Any] property

Get the regression metrics.

Returns:

Type Description
Dict[str, Any]

Dict[str, Any]: Regression metrics as dictionary.

get_variables: Dict[str, Dict[str, float]] property

Get the variables of the fit.

Returns:

Type Description
Dict[str, Dict[str, float]]

Dict[str, Dict[str, float]]: Variables of the fit.

settings_conf_interval: Union[bool, Dict[str, Any]] property

Confidence interval settings.

Returns:

Type Description
Union[bool, Dict[str, Any]]

Union[bool, Dict[str, Any]]: Confidence interval settings.

settings_configurations: Dict[str, Any] property

Configure settings.

Returns:

Type Description
Dict[str, Any]

Dict[str, Any]: Configuration settings.

settings_global_fitting: Union[bool, int] property

Global fitting settings.

Returns:

Type Description
Union[bool, int]

Union[bool, int]: Global fitting settings.

__init__(args_out)

Initialize the SolverResults class.

Parameters:

Name Type Description Default
args_out Dict[str, Any]

Dictionary of SpectraFit settings and results.

required
Source code in spectrafit/plugins/notebook.py
Python
def __init__(self, args_out: Dict[str, Any]) -> None:
    """Initialize the SolverResults class.

    Args:
        args_out (Dict[str, Any]): Dictionary of SpectraFit settings and results.
    """
    self.args_out = args_out

SpectraFitNotebook

Bases: DataFramePlot, DataFrameDisplay, ExportResults

Jupyter Notebook plugin for SpectraFit.

Source code in spectrafit/plugins/notebook.py
Python
class SpectraFitNotebook(DataFramePlot, DataFrameDisplay, ExportResults):
    """Jupyter Notebook plugin for SpectraFit."""

    args: Dict[str, Any]
    global_: Union[bool, int] = False
    autopeak: bool = False
    df_fit: pd.DataFrame
    df_pre: pd.DataFrame = pd.DataFrame()
    df_metric: pd.DataFrame = pd.DataFrame()
    df_peaks: pd.DataFrame = pd.DataFrame()
    initial_model: List[Dict[str, Dict[str, Dict[str, Any]]]]

    def __init__(
        self,
        df: pd.DataFrame,
        x_column: str,
        y_column: Union[str, List[str]],
        oversampling: bool = False,
        smooth: int = 0,
        shift: float = 0,
        energy_start: Optional[float] = None,
        energy_stop: Optional[float] = None,
        title: Optional[str] = None,
        xaxis_title: XAxisAPI = XAxisAPI(name="Energy", unit="eV"),
        yaxis_title: YAxisAPI = YAxisAPI(name="Intensity", unit="a.u."),
        residual_title: ResidualAPI = ResidualAPI(name="Residual", unit="a.u."),
        metric_title: MetricAPI = MetricAPI(
            name_0="Metrics", unit_0="a.u.", name_1="Metrics", unit_1="a.u."
        ),
        run_title: RunAPI = RunAPI(name="Run", unit="#"),
        legend_title: str = "Spectra",
        show_legend: bool = True,
        legend: LegendAPI = LegendAPI(
            orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1
        ),
        font: FontAPI = FontAPI(family="Open Sans, monospace", size=12, color="black"),
        minor_ticks: bool = True,
        color: ColorAPI = ColorAPI(),
        grid: GridAPI = GridAPI(),
        size: Tuple[int, Tuple[int, int]] = (800, (600, 300)),
        fname: str = "results",
        folder: Optional[str] = None,
        description: DescriptionAPI = DescriptionAPI(),
    ) -> None:
        """Initialize the SpectraFitNotebook class.

        !!! info "About `Pydantic`-Definition"

            For being consistent with the `SpectraFit` class, the `SpectraFitNotebook`
            class refers to the `Pydantic`-Definition of the `SpectraFit` class.
            Currently, the following definitions are used:

            - `XAxisAPI`: Definition of the x-axis including units
            - `YAxisAPI`: Definition of the y-axis including units
            - `ResidualAPI`: Definition of the residual including units
            - `LegendAPI`: Definition of the legend according to `Plotly`
            - `FontAPI`: Definition of the font according to `Plotly`, which can be
                replaced by _built-in_ definitions
            - `ColorAPI`: Definition of the colors according to `Plotly`, which can be
                replace by _built-in_ definitions
            - `GridAPI`: Definition of the grid according to `Plotly`
            - `DescriptionAPI`: Definition of the description of the fit project

            All classes can be replaced by the corresponding `dict`-definition.

            ```python
            LegendAPI(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
            ```

            can be also

            ```python
            dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
            ```

        Args:
            df (pd.DataFrame): Dataframe with the data to fit.
            x_column (str): Name of the x column.
            y_column (Union[str, List[str]]): Name of the y column(s).
            oversampling (bool, optional): Activate the oversampling options.
                 Defaults to False.
            smooth (int, optional): Activate the smoothing functions setting an
                 `int>0`. Defaults to 0.
            shift (float, optional): Apply shift to the x-column. Defaults to 0.
            energy_start (Optional[float], optional): Energy start. Defaults to None.
            energy_stop (Optional[float], optional): Energy stop. Defaults to None.
            title (Optional[str], optional): Plot title. Defaults to None.
            xaxis_title (XAxisAPI, optional): X-Axis title. Defaults to XAxisAPI().
            yaxis_title (YAxisAPI, optional): Y-Axis title. Defaults to YAxisAPI().
            residual_title (ResidualAPI, optional): Residual title. Defaults to
                 ResidualAPI().
            metric_title (MetricAPI, optional): Metric title for both axes, bar and
                 line plot. Defaults to MetricAPI().
            run_title (RunAPI, optional): Run title. Defaults to RunAPI().
            legend_title (str, optional): Legend title. Defaults to "Spectra".
            show_legend (bool, optional): Show legend. Defaults to True.
            legend (LegendAPI, optional): Legend options. Defaults to LegendAPI().
            font (FontAPI, optional): Font options. Defaults to FontAPI().
            minor_ticks (bool, optional): Show minor ticks. Defaults to True.
            color (ColorAPI, optional): Color options. Defaults to ColorAPI().
            grid (GridAPI, optional): Grid options. Defaults to GridAPI().
            size (Tuple[int, Tuple[int, int]] , optional): Size of the fit- and metric-
                 plot. First width defines the fit, the second the metrics.
                 Defaults to (800, (600,300)).
            fname (str, optional): Filename of the export. Defaults to "results".
            folder (Optional[str], optional): Folder of the export. Defaults to None.
            description (DescriptionAPI, optional): Description of the data. Defaults
                 to DescriptionAPI()..


        Raises:
            ValueError: If the dataframe only contains one column.
        """
        self.x_column = x_column
        self.y_column = y_column

        if df.shape[1] < 2:
            raise ValueError("The dataframe must have 2 or more columns.")

        if isinstance(self.y_column, list):
            self.global_ = 1
            self.df = df[[self.x_column, *self.y_column]]
        else:
            self.df = df[[self.x_column, self.y_column]]
        self.df_org = self.df.copy()

        self.args_pre = DataPreProcessingAPI(
            oversampling=oversampling,
            energy_start=energy_start,
            energy_stop=energy_stop,
            smooth=smooth,
            shift=shift,
            column=list(self.df.columns),
        )
        self.args_desc = description

        self.args_plot = PlotAPI(
            x=self.x_column,
            y=self.y_column,
            title=title,
            xaxis_title=xaxis_title,
            yaxis_title=yaxis_title,
            residual_title=residual_title,
            metric_title=metric_title,
            run_title=run_title,
            legend_title=legend_title,
            show_legend=show_legend,
            legend=legend,
            font=font,
            minor_ticks=minor_ticks,
            color=color,
            grid=grid,
            size=size,
        )
        self.export_args_df = FnameAPI(fname=fname, folder=folder, suffix="csv")
        self.export_args_out = FnameAPI(fname=fname, folder=folder, suffix="lock")

        self.settings_solver_models: SolverModelsAPI = SolverModelsAPI()
        self.pre_statistic: Dict[str, Any] = {}

    @property
    def pre_process(self) -> None:
        """Pre-processing class."""
        self.df, _pre_statistic = PreProcessing(
            df=self.df, args=self.args_pre.model_dump()
        )()
        self.pre_statistic = _pre_statistic["data_statistic"]
        self.df_pre = self.df.copy()

    @property
    def return_pre_statistic(self) -> Dict[str, Any]:
        """Return the pre-processing statistic."""
        return self.pre_statistic

    @property
    def return_df_org(self) -> pd.DataFrame:
        """Return the original dataframe."""
        return self.df_org

    @property
    def return_df_pre(self) -> Union[pd.DataFrame, None]:
        """Return the pre-processed dataframe."""
        return self.df_pre

    @property
    def return_df(self) -> pd.DataFrame:
        """Return the dataframe."""
        return self.df

    @property
    def return_df_fit(self) -> pd.DataFrame:
        """Return the fit dataframe."""
        return self.df_fit

    @property
    def export_df_act(self) -> None:
        """Export the dataframe."""
        self.export_args_df.prefix = "act"
        self.export_df(df=self.df, args=self.export_args_df)

    @property
    def export_df_fit(self) -> None:
        """Export the dataframe."""
        self.export_args_df.prefix = "fit"
        self.export_df(df=self.df_fit, args=self.export_args_df)

    @property
    def export_df_org(self) -> None:
        """Export the dataframe."""
        self.export_args_df.prefix = "org"
        self.export_df(df=self.df_org, args=self.export_args_df)

    @property
    def export_df_pre(self) -> None:
        """Export the dataframe."""
        if self.df_pre.empty is False:
            self.export_args_df.prefix = "pre"
            self.export_df(df=self.df_pre, args=self.export_args_df)

    @property
    def export_df_metric(self) -> None:
        """Export the dataframe."""
        if self.df_metric.empty is False:
            self.export_args_df.prefix = "metric"
            self.export_df(df=self.df_metric, args=self.export_args_df)

    @property
    def export_df_peaks(self) -> None:
        """Export the dataframe."""
        if self.df_peaks.empty is False:
            self.export_args_df.prefix = "peaks"
            self.export_df(df=self.df_peaks, args=self.export_args_df)

    @property
    def plot_original_df(self) -> None:
        """Plot the original spectra."""
        self.plot_dataframe(args_plot=self.args_plot, df=self.df_org)

    @property
    def plot_current_df(self) -> None:
        """Plot the current spectra."""
        self.plot_dataframe(args_plot=self.args_plot, df=self.df)

    @property
    def plot_preprocessed_df(self) -> None:
        """Plot the current processed spectra."""
        self.plot_2dataframes(
            args_plot=self.args_plot, df_1=self.df_pre, df_2=self.df_org
        )

    def plot_fit_df(self) -> None:
        """Plot the fit."""
        if self.global_ == 1:
            self.plot_global_fit(args_plot=self.args_plot, df=self.df_fit)
        else:
            self.plot_2dataframes(args_plot=self.args_plot, df_1=self.df_fit)

    def plot_current_metric(
        self,
        bar_criteria: Optional[Union[str, List[str]]] = None,
        line_criteria: Optional[Union[str, List[str]]] = None,
    ) -> None:
        """Plot the current metric.

        Args:
            bar_criteria (Optional[Union[str, List[str]]], optional): Criteria for the
                    bar plot. Defaults to None.
            line_criteria (Optional[Union[str, List[str]]], optional): Criteria for
                    the line plot. Defaults to None.
        """
        if bar_criteria is None:
            bar_criteria = [
                "akaike_information",
                "bayesian_information",
            ]

        if line_criteria is None:
            line_criteria = [
                "mean_squared_error",
            ]

        self.plot_metric(
            args_plot=self.args_plot,
            df_metric=self.df_metric,
            bar_criteria=bar_criteria,
            line_criteria=line_criteria,
        )

    @property
    def generate_report(self) -> None:
        """Generate the SpectraFit report of the final fit."""
        self.export_report(
            report=ExportReport(
                description=self.args_desc,
                initial_model=self.initial_model,
                pre_processing=self.args_pre,
                settings_solver_models=self.settings_solver_models,
                fname=self.export_args_out,
                args_out=self.args,
                df_org=self.df_org,
                df_pre=self.df_pre,
                df_fit=self.df_fit,
            )(),
            args=self.export_args_out,
        )

    def solver_model(
        self,
        initial_model: List[Dict[str, Dict[str, Dict[str, Any]]]],
        show_plot: bool = True,
        show_metric: bool = True,
        show_df: bool = False,
        show_peaks: bool = False,
        conf_interval: Union[bool, Dict[str, Any]] = False,
        bar_criteria: Optional[Union[str, List[str]]] = None,
        line_criteria: Optional[Union[str, List[str]]] = None,
        solver_settings: Optional[Dict[str, Any]] = None,
    ) -> None:
        """Solves the fit problem based on the proposed model.

        Args:
            initial_model (List[Dict[str, Dict[str, Dict[str, Any]]]]): List of
                 dictionary with the initial model and its fitting parameters and
                 options for the components.
            show_plot (bool, optional): Show current fit results as plot.
                 Defaults to True.
            show_metric (bool, optional): Show the metric of the fit. Defaults to True.
            show_df (bool, optional): Show current fit results as dataframe. Defaults
                 to False.
            show_peaks (bool, optional): Show the peaks of fit. Defaults to False.
            conf_interval (Union[bool,Dict[str, Any]], optional): Bool or dictionary for
                 the parameter with the parameter for calculating the confidence
                 interval. Using `conf_interval=False` turns of the calculation of
                 the confidence interval and accelerate its. Defaults to False.
            bar_criteria (Optional[Union[str, List[str]]], optional): Criteria for the
                bar plot. It is recommended to use attributes from `goodness of fit`
                module. Defaults to None.
            line_criteria (Optional[Union[str, List[str]]], optional): Criteria for
                the line plot. It is recommended to use attributes from
                `regression metric` module. Defaults to None.
            solver_settings (Optional[Dict[str, Any]], optional): Settings for
                the solver models, which is split into settings for `minimizer` and
                `optimizer`.  Defaults to None.

        !!! info: "About criteria"

            The criteria for the bar and line plot are defined as a list of strings.
            The supported keywords are defined by the built-in metrics for
            `goodness of fit` and `regression` and can be checked in [documentation](
                https://anselmoo.github.io/spectrafit/doc/statistics/
            ).

        """
        self.initial_model = initial_model

        if isinstance(conf_interval, bool):
            conf_interval = (
                ConfIntervalAPI().model_dump() if conf_interval is True else False
            )
        elif isinstance(conf_interval, dict):
            conf_interval = ConfIntervalAPI(**conf_interval).dict(exclude_none=True)

        if solver_settings is not None and isinstance(solver_settings, dict):
            self.settings_solver_models = SolverModelsAPI(**solver_settings)

        self.df_fit, self.args = PostProcessing(
            self.df,
            {
                "global_": self.global_,
                "conf_interval": conf_interval,
            },
            *SolverModels(
                df=self.df,
                args={
                    "global_": self.global_,
                    "column": list(self.df.columns),
                    "autopeak": self.autopeak,
                    **list2dict(peak_list=self.initial_model),
                    **self.settings_solver_models.model_dump(),
                },
            )(),
        )()
        self.update_metric()
        self.update_peaks()
        if show_plot:
            self.plot_fit_df()

        if show_metric:
            self.plot_current_metric(
                bar_criteria=bar_criteria, line_criteria=line_criteria
            )

        if show_df:
            self.interactive_display(df=self.df_fit)

        if show_peaks:
            self.interactive_display(df=self.df_peaks)

    def update_peaks(self) -> None:
        """Update the peaks dataframe as multi-column dataframe.

        The multi-column dataframe is used for the interactive display of the
        peaks with initial, current (model), and best fit values.
        """
        tuples = []
        _list = []
        for key_1, _dict in self.args["fit_insights"]["variables"].items():
            tuples.extend([(key_1, key_2) for key_2, val in _dict.items()])
            _list.extend([val for _, val in _dict.items()])

        self.df_peaks = pd.concat(
            [
                self.df_peaks,
                pd.DataFrame(
                    pd.Series(
                        _list,
                        index=pd.MultiIndex.from_tuples(
                            tuples, names=["component", "parameter"]
                        ),
                    )
                ).T,
            ],
            ignore_index=True,
        )

    def update_metric(self) -> None:
        """Update the metric dataframe."""
        self.df_metric = pd.concat(
            [self.df_metric, SolverResults(self.args).get_current_metric],
            ignore_index=True,
        )

    def display_fit_df(self, mode: Optional[str] = "regular") -> None:
        """Display the fit dataframe.

        Args:
            mode (str, optional): Display mode. Defaults to "regular".
        """
        self.df_display(df=self.df_fit, mode=mode)

    def display_preprocessed_df(self, mode: Optional[str] = "regular") -> None:
        """Display the preprocessed dataframe.

        Args:
            mode (str, optional): Display mode. Defaults to "regular".
        """
        self.df_display(df=self.df_pre, mode=mode)

    def display_original_df(self, mode: Optional[str] = "regular") -> None:
        """Display the original dataframe.

        Args:
            mode (str, optional): Display mode. Defaults to "regular".
        """
        self.df_display(df=self.df_org, mode=mode)

    def display_current_df(self, mode: Optional[str] = "regular") -> None:
        """Display the current dataframe.

        Args:
            mode (str, optional): Display mode. Defaults to "regular".
        """
        self.df_display(df=self.df, mode=mode)

export_df_act: None property

Export the dataframe.

export_df_fit: None property

Export the dataframe.

export_df_metric: None property

Export the dataframe.

export_df_org: None property

Export the dataframe.

export_df_peaks: None property

Export the dataframe.

export_df_pre: None property

Export the dataframe.

generate_report: None property

Generate the SpectraFit report of the final fit.

plot_current_df: None property

Plot the current spectra.

plot_original_df: None property

Plot the original spectra.

plot_preprocessed_df: None property

Plot the current processed spectra.

pre_process: None property

Pre-processing class.

return_df: pd.DataFrame property

Return the dataframe.

return_df_fit: pd.DataFrame property

Return the fit dataframe.

return_df_org: pd.DataFrame property

Return the original dataframe.

return_df_pre: Union[pd.DataFrame, None] property

Return the pre-processed dataframe.

return_pre_statistic: Dict[str, Any] property

Return the pre-processing statistic.

__init__(df, x_column, y_column, oversampling=False, smooth=0, shift=0, energy_start=None, energy_stop=None, title=None, xaxis_title=XAxisAPI(name='Energy', unit='eV'), yaxis_title=YAxisAPI(name='Intensity', unit='a.u.'), residual_title=ResidualAPI(name='Residual', unit='a.u.'), metric_title=MetricAPI(name_0='Metrics', unit_0='a.u.', name_1='Metrics', unit_1='a.u.'), run_title=RunAPI(name='Run', unit='#'), legend_title='Spectra', show_legend=True, legend=LegendAPI(orientation='h', yanchor='bottom', y=1.02, xanchor='right', x=1), font=FontAPI(family='Open Sans, monospace', size=12, color='black'), minor_ticks=True, color=ColorAPI(), grid=GridAPI(), size=(800, (600, 300)), fname='results', folder=None, description=DescriptionAPI())

Initialize the SpectraFitNotebook class.

About Pydantic-Definition

For being consistent with the SpectraFit class, the SpectraFitNotebook class refers to the Pydantic-Definition of the SpectraFit class. Currently, the following definitions are used:

  • XAxisAPI: Definition of the x-axis including units
  • YAxisAPI: Definition of the y-axis including units
  • ResidualAPI: Definition of the residual including units
  • LegendAPI: Definition of the legend according to Plotly
  • FontAPI: Definition of the font according to Plotly, which can be replaced by built-in definitions
  • ColorAPI: Definition of the colors according to Plotly, which can be replace by built-in definitions
  • GridAPI: Definition of the grid according to Plotly
  • DescriptionAPI: Definition of the description of the fit project

All classes can be replaced by the corresponding dict-definition.

Python
LegendAPI(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)

can be also

Python
dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)

Parameters:

Name Type Description Default
df DataFrame

Dataframe with the data to fit.

required
x_column str

Name of the x column.

required
y_column Union[str, List[str]]

Name of the y column(s).

required
oversampling bool

Activate the oversampling options. Defaults to False.

False
smooth int

Activate the smoothing functions setting an int>0. Defaults to 0.

0
shift float

Apply shift to the x-column. Defaults to 0.

0
energy_start Optional[float]

Energy start. Defaults to None.

None
energy_stop Optional[float]

Energy stop. Defaults to None.

None
title Optional[str]

Plot title. Defaults to None.

None
xaxis_title XAxisAPI

X-Axis title. Defaults to XAxisAPI().

XAxisAPI(name='Energy', unit='eV')
yaxis_title YAxisAPI

Y-Axis title. Defaults to YAxisAPI().

YAxisAPI(name='Intensity', unit='a.u.')
residual_title ResidualAPI

Residual title. Defaults to ResidualAPI().

ResidualAPI(name='Residual', unit='a.u.')
metric_title MetricAPI

Metric title for both axes, bar and line plot. Defaults to MetricAPI().

MetricAPI(name_0='Metrics', unit_0='a.u.', name_1='Metrics', unit_1='a.u.')
run_title RunAPI

Run title. Defaults to RunAPI().

RunAPI(name='Run', unit='#')
legend_title str

Legend title. Defaults to "Spectra".

'Spectra'
show_legend bool

Show legend. Defaults to True.

True
legend LegendAPI

Legend options. Defaults to LegendAPI().

LegendAPI(orientation='h', yanchor='bottom', y=1.02, xanchor='right', x=1)
font FontAPI

Font options. Defaults to FontAPI().

FontAPI(family='Open Sans, monospace', size=12, color='black')
minor_ticks bool

Show minor ticks. Defaults to True.

True
color ColorAPI

Color options. Defaults to ColorAPI().

ColorAPI()
grid GridAPI

Grid options. Defaults to GridAPI().

GridAPI()
size Tuple[int, Tuple[int, int]]

Size of the fit- and metric- plot. First width defines the fit, the second the metrics. Defaults to (800, (600,300)).

(800, (600, 300))
fname str

Filename of the export. Defaults to "results".

'results'
folder Optional[str]

Folder of the export. Defaults to None.

None
description DescriptionAPI

Description of the data. Defaults to DescriptionAPI()..

DescriptionAPI()

Raises:

Type Description
ValueError

If the dataframe only contains one column.

Source code in spectrafit/plugins/notebook.py
Python
def __init__(
    self,
    df: pd.DataFrame,
    x_column: str,
    y_column: Union[str, List[str]],
    oversampling: bool = False,
    smooth: int = 0,
    shift: float = 0,
    energy_start: Optional[float] = None,
    energy_stop: Optional[float] = None,
    title: Optional[str] = None,
    xaxis_title: XAxisAPI = XAxisAPI(name="Energy", unit="eV"),
    yaxis_title: YAxisAPI = YAxisAPI(name="Intensity", unit="a.u."),
    residual_title: ResidualAPI = ResidualAPI(name="Residual", unit="a.u."),
    metric_title: MetricAPI = MetricAPI(
        name_0="Metrics", unit_0="a.u.", name_1="Metrics", unit_1="a.u."
    ),
    run_title: RunAPI = RunAPI(name="Run", unit="#"),
    legend_title: str = "Spectra",
    show_legend: bool = True,
    legend: LegendAPI = LegendAPI(
        orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1
    ),
    font: FontAPI = FontAPI(family="Open Sans, monospace", size=12, color="black"),
    minor_ticks: bool = True,
    color: ColorAPI = ColorAPI(),
    grid: GridAPI = GridAPI(),
    size: Tuple[int, Tuple[int, int]] = (800, (600, 300)),
    fname: str = "results",
    folder: Optional[str] = None,
    description: DescriptionAPI = DescriptionAPI(),
) -> None:
    """Initialize the SpectraFitNotebook class.

    !!! info "About `Pydantic`-Definition"

        For being consistent with the `SpectraFit` class, the `SpectraFitNotebook`
        class refers to the `Pydantic`-Definition of the `SpectraFit` class.
        Currently, the following definitions are used:

        - `XAxisAPI`: Definition of the x-axis including units
        - `YAxisAPI`: Definition of the y-axis including units
        - `ResidualAPI`: Definition of the residual including units
        - `LegendAPI`: Definition of the legend according to `Plotly`
        - `FontAPI`: Definition of the font according to `Plotly`, which can be
            replaced by _built-in_ definitions
        - `ColorAPI`: Definition of the colors according to `Plotly`, which can be
            replace by _built-in_ definitions
        - `GridAPI`: Definition of the grid according to `Plotly`
        - `DescriptionAPI`: Definition of the description of the fit project

        All classes can be replaced by the corresponding `dict`-definition.

        ```python
        LegendAPI(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
        ```

        can be also

        ```python
        dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
        ```

    Args:
        df (pd.DataFrame): Dataframe with the data to fit.
        x_column (str): Name of the x column.
        y_column (Union[str, List[str]]): Name of the y column(s).
        oversampling (bool, optional): Activate the oversampling options.
             Defaults to False.
        smooth (int, optional): Activate the smoothing functions setting an
             `int>0`. Defaults to 0.
        shift (float, optional): Apply shift to the x-column. Defaults to 0.
        energy_start (Optional[float], optional): Energy start. Defaults to None.
        energy_stop (Optional[float], optional): Energy stop. Defaults to None.
        title (Optional[str], optional): Plot title. Defaults to None.
        xaxis_title (XAxisAPI, optional): X-Axis title. Defaults to XAxisAPI().
        yaxis_title (YAxisAPI, optional): Y-Axis title. Defaults to YAxisAPI().
        residual_title (ResidualAPI, optional): Residual title. Defaults to
             ResidualAPI().
        metric_title (MetricAPI, optional): Metric title for both axes, bar and
             line plot. Defaults to MetricAPI().
        run_title (RunAPI, optional): Run title. Defaults to RunAPI().
        legend_title (str, optional): Legend title. Defaults to "Spectra".
        show_legend (bool, optional): Show legend. Defaults to True.
        legend (LegendAPI, optional): Legend options. Defaults to LegendAPI().
        font (FontAPI, optional): Font options. Defaults to FontAPI().
        minor_ticks (bool, optional): Show minor ticks. Defaults to True.
        color (ColorAPI, optional): Color options. Defaults to ColorAPI().
        grid (GridAPI, optional): Grid options. Defaults to GridAPI().
        size (Tuple[int, Tuple[int, int]] , optional): Size of the fit- and metric-
             plot. First width defines the fit, the second the metrics.
             Defaults to (800, (600,300)).
        fname (str, optional): Filename of the export. Defaults to "results".
        folder (Optional[str], optional): Folder of the export. Defaults to None.
        description (DescriptionAPI, optional): Description of the data. Defaults
             to DescriptionAPI()..


    Raises:
        ValueError: If the dataframe only contains one column.
    """
    self.x_column = x_column
    self.y_column = y_column

    if df.shape[1] < 2:
        raise ValueError("The dataframe must have 2 or more columns.")

    if isinstance(self.y_column, list):
        self.global_ = 1
        self.df = df[[self.x_column, *self.y_column]]
    else:
        self.df = df[[self.x_column, self.y_column]]
    self.df_org = self.df.copy()

    self.args_pre = DataPreProcessingAPI(
        oversampling=oversampling,
        energy_start=energy_start,
        energy_stop=energy_stop,
        smooth=smooth,
        shift=shift,
        column=list(self.df.columns),
    )
    self.args_desc = description

    self.args_plot = PlotAPI(
        x=self.x_column,
        y=self.y_column,
        title=title,
        xaxis_title=xaxis_title,
        yaxis_title=yaxis_title,
        residual_title=residual_title,
        metric_title=metric_title,
        run_title=run_title,
        legend_title=legend_title,
        show_legend=show_legend,
        legend=legend,
        font=font,
        minor_ticks=minor_ticks,
        color=color,
        grid=grid,
        size=size,
    )
    self.export_args_df = FnameAPI(fname=fname, folder=folder, suffix="csv")
    self.export_args_out = FnameAPI(fname=fname, folder=folder, suffix="lock")

    self.settings_solver_models: SolverModelsAPI = SolverModelsAPI()
    self.pre_statistic: Dict[str, Any] = {}

display_current_df(mode='regular')

Display the current dataframe.

Parameters:

Name Type Description Default
mode str

Display mode. Defaults to "regular".

'regular'
Source code in spectrafit/plugins/notebook.py
Python
def display_current_df(self, mode: Optional[str] = "regular") -> None:
    """Display the current dataframe.

    Args:
        mode (str, optional): Display mode. Defaults to "regular".
    """
    self.df_display(df=self.df, mode=mode)

display_fit_df(mode='regular')

Display the fit dataframe.

Parameters:

Name Type Description Default
mode str

Display mode. Defaults to "regular".

'regular'
Source code in spectrafit/plugins/notebook.py
Python
def display_fit_df(self, mode: Optional[str] = "regular") -> None:
    """Display the fit dataframe.

    Args:
        mode (str, optional): Display mode. Defaults to "regular".
    """
    self.df_display(df=self.df_fit, mode=mode)

display_original_df(mode='regular')

Display the original dataframe.

Parameters:

Name Type Description Default
mode str

Display mode. Defaults to "regular".

'regular'
Source code in spectrafit/plugins/notebook.py
Python
def display_original_df(self, mode: Optional[str] = "regular") -> None:
    """Display the original dataframe.

    Args:
        mode (str, optional): Display mode. Defaults to "regular".
    """
    self.df_display(df=self.df_org, mode=mode)

display_preprocessed_df(mode='regular')

Display the preprocessed dataframe.

Parameters:

Name Type Description Default
mode str

Display mode. Defaults to "regular".

'regular'
Source code in spectrafit/plugins/notebook.py
Python
def display_preprocessed_df(self, mode: Optional[str] = "regular") -> None:
    """Display the preprocessed dataframe.

    Args:
        mode (str, optional): Display mode. Defaults to "regular".
    """
    self.df_display(df=self.df_pre, mode=mode)

plot_current_metric(bar_criteria=None, line_criteria=None)

Plot the current metric.

Parameters:

Name Type Description Default
bar_criteria Optional[Union[str, List[str]]]

Criteria for the bar plot. Defaults to None.

None
line_criteria Optional[Union[str, List[str]]]

Criteria for the line plot. Defaults to None.

None
Source code in spectrafit/plugins/notebook.py
Python
def plot_current_metric(
    self,
    bar_criteria: Optional[Union[str, List[str]]] = None,
    line_criteria: Optional[Union[str, List[str]]] = None,
) -> None:
    """Plot the current metric.

    Args:
        bar_criteria (Optional[Union[str, List[str]]], optional): Criteria for the
                bar plot. Defaults to None.
        line_criteria (Optional[Union[str, List[str]]], optional): Criteria for
                the line plot. Defaults to None.
    """
    if bar_criteria is None:
        bar_criteria = [
            "akaike_information",
            "bayesian_information",
        ]

    if line_criteria is None:
        line_criteria = [
            "mean_squared_error",
        ]

    self.plot_metric(
        args_plot=self.args_plot,
        df_metric=self.df_metric,
        bar_criteria=bar_criteria,
        line_criteria=line_criteria,
    )

plot_fit_df()

Plot the fit.

Source code in spectrafit/plugins/notebook.py
Python
def plot_fit_df(self) -> None:
    """Plot the fit."""
    if self.global_ == 1:
        self.plot_global_fit(args_plot=self.args_plot, df=self.df_fit)
    else:
        self.plot_2dataframes(args_plot=self.args_plot, df_1=self.df_fit)

solver_model(initial_model, show_plot=True, show_metric=True, show_df=False, show_peaks=False, conf_interval=False, bar_criteria=None, line_criteria=None, solver_settings=None)

Solves the fit problem based on the proposed model.

Parameters:

Name Type Description Default
initial_model List[Dict[str, Dict[str, Dict[str, Any]]]]

List of dictionary with the initial model and its fitting parameters and options for the components.

required
show_plot bool

Show current fit results as plot. Defaults to True.

True
show_metric bool

Show the metric of the fit. Defaults to True.

True
show_df bool

Show current fit results as dataframe. Defaults to False.

False
show_peaks bool

Show the peaks of fit. Defaults to False.

False
conf_interval Union[bool, Dict[str, Any]]

Bool or dictionary for the parameter with the parameter for calculating the confidence interval. Using conf_interval=False turns of the calculation of the confidence interval and accelerate its. Defaults to False.

False
bar_criteria Optional[Union[str, List[str]]]

Criteria for the bar plot. It is recommended to use attributes from goodness of fit module. Defaults to None.

None
line_criteria Optional[Union[str, List[str]]]

Criteria for the line plot. It is recommended to use attributes from regression metric module. Defaults to None.

None
solver_settings Optional[Dict[str, Any]]

Settings for the solver models, which is split into settings for minimizer and optimizer. Defaults to None.

None

!!! info: "About criteria"

MySQL
The criteria for the bar and line plot are defined as a list of strings.
The supported keywords are defined by the built-in metrics for
`goodness of fit` and `regression` and can be checked in [documentation](
    https://anselmoo.github.io/spectrafit/doc/statistics/
).
Source code in spectrafit/plugins/notebook.py
Python
def solver_model(
    self,
    initial_model: List[Dict[str, Dict[str, Dict[str, Any]]]],
    show_plot: bool = True,
    show_metric: bool = True,
    show_df: bool = False,
    show_peaks: bool = False,
    conf_interval: Union[bool, Dict[str, Any]] = False,
    bar_criteria: Optional[Union[str, List[str]]] = None,
    line_criteria: Optional[Union[str, List[str]]] = None,
    solver_settings: Optional[Dict[str, Any]] = None,
) -> None:
    """Solves the fit problem based on the proposed model.

    Args:
        initial_model (List[Dict[str, Dict[str, Dict[str, Any]]]]): List of
             dictionary with the initial model and its fitting parameters and
             options for the components.
        show_plot (bool, optional): Show current fit results as plot.
             Defaults to True.
        show_metric (bool, optional): Show the metric of the fit. Defaults to True.
        show_df (bool, optional): Show current fit results as dataframe. Defaults
             to False.
        show_peaks (bool, optional): Show the peaks of fit. Defaults to False.
        conf_interval (Union[bool,Dict[str, Any]], optional): Bool or dictionary for
             the parameter with the parameter for calculating the confidence
             interval. Using `conf_interval=False` turns of the calculation of
             the confidence interval and accelerate its. Defaults to False.
        bar_criteria (Optional[Union[str, List[str]]], optional): Criteria for the
            bar plot. It is recommended to use attributes from `goodness of fit`
            module. Defaults to None.
        line_criteria (Optional[Union[str, List[str]]], optional): Criteria for
            the line plot. It is recommended to use attributes from
            `regression metric` module. Defaults to None.
        solver_settings (Optional[Dict[str, Any]], optional): Settings for
            the solver models, which is split into settings for `minimizer` and
            `optimizer`.  Defaults to None.

    !!! info: "About criteria"

        The criteria for the bar and line plot are defined as a list of strings.
        The supported keywords are defined by the built-in metrics for
        `goodness of fit` and `regression` and can be checked in [documentation](
            https://anselmoo.github.io/spectrafit/doc/statistics/
        ).

    """
    self.initial_model = initial_model

    if isinstance(conf_interval, bool):
        conf_interval = (
            ConfIntervalAPI().model_dump() if conf_interval is True else False
        )
    elif isinstance(conf_interval, dict):
        conf_interval = ConfIntervalAPI(**conf_interval).dict(exclude_none=True)

    if solver_settings is not None and isinstance(solver_settings, dict):
        self.settings_solver_models = SolverModelsAPI(**solver_settings)

    self.df_fit, self.args = PostProcessing(
        self.df,
        {
            "global_": self.global_,
            "conf_interval": conf_interval,
        },
        *SolverModels(
            df=self.df,
            args={
                "global_": self.global_,
                "column": list(self.df.columns),
                "autopeak": self.autopeak,
                **list2dict(peak_list=self.initial_model),
                **self.settings_solver_models.model_dump(),
            },
        )(),
    )()
    self.update_metric()
    self.update_peaks()
    if show_plot:
        self.plot_fit_df()

    if show_metric:
        self.plot_current_metric(
            bar_criteria=bar_criteria, line_criteria=line_criteria
        )

    if show_df:
        self.interactive_display(df=self.df_fit)

    if show_peaks:
        self.interactive_display(df=self.df_peaks)

update_metric()

Update the metric dataframe.

Source code in spectrafit/plugins/notebook.py
Python
def update_metric(self) -> None:
    """Update the metric dataframe."""
    self.df_metric = pd.concat(
        [self.df_metric, SolverResults(self.args).get_current_metric],
        ignore_index=True,
    )

update_peaks()

Update the peaks dataframe as multi-column dataframe.

The multi-column dataframe is used for the interactive display of the peaks with initial, current (model), and best fit values.

Source code in spectrafit/plugins/notebook.py
Python
def update_peaks(self) -> None:
    """Update the peaks dataframe as multi-column dataframe.

    The multi-column dataframe is used for the interactive display of the
    peaks with initial, current (model), and best fit values.
    """
    tuples = []
    _list = []
    for key_1, _dict in self.args["fit_insights"]["variables"].items():
        tuples.extend([(key_1, key_2) for key_2, val in _dict.items()])
        _list.extend([val for _, val in _dict.items()])

    self.df_peaks = pd.concat(
        [
            self.df_peaks,
            pd.DataFrame(
                pd.Series(
                    _list,
                    index=pd.MultiIndex.from_tuples(
                        tuples, names=["component", "parameter"]
                    ),
                )
            ).T,
        ],
        ignore_index=True,
    )

Color Scheme

For changing the color scheme of the plots, additional color schemes can be added to the spectrafit.plugins.notebook module. The color schemes are defined as a pydantic BaseSettings class with the following attributes:

Color themes for the Plots in Jupyter Notebooks.

ColorBlindColor

Bases: ColorAPI

Color blind theme for SpectraFit.

Source code in spectrafit/plugins/color_schemas.py
Python
class ColorBlindColor(ColorAPI):
    """Color blind theme for SpectraFit."""

    intensity: str = "#1f77b4"
    residual: str = "#ff7f0e"
    fit: str = "#d62728"
    bars: List[str] = ["#d62728", "#9467bd", "#8c564b", "#e377c2", "#7f7f7f"]
    lines: List[str] = ["#8c564b", "#e377c2", "#7f7f7f", "#d62728", "#9467bd"]
    components: str = "#2ca02c"
    paper: str = "#ffffff"
    plot: str = "#ffffff"
    color: str = "#000000"
    grid: str = "#d9d9d9"
    line: str = "#d9d9d9"
    zero_line: str = "#1f77b4"
    ticks: str = "#000000"
    font: str = "#000000"

ColorBlindFont

Bases: FontAPI

Color blind font theme for SpectraFit.

Source code in spectrafit/plugins/color_schemas.py
Python
class ColorBlindFont(FontAPI):
    """Color blind font theme for SpectraFit."""

    family: str = "Open Sans"
    size: int = 12
    color: str = "#000000"

DevOpsDarkColor

Bases: ColorAPI

GitHub dark color inspired theme for SpectraFit.

Please check, primer/github-vscode-theme

Source code in spectrafit/plugins/color_schemas.py
Python
class DevOpsDarkColor(ColorAPI):
    """GitHub dark color inspired theme for SpectraFit.

    Please check, https://github.com/primer/github-vscode-theme
    """

    intensity: str = "#1e4f8a"
    residual: str = "#d73a49"
    fit: str = "#22863a"
    bars: List[str] = ["#005cc5", "#6f42c1", "#d73a49", "#22863a", "#d73a49"]
    lines: List[str] = ["#d73a49", "#22863a", "#d73a49", "#005cc5", "#6f42c1"]
    components: str = "#d73a49"
    paper: str = "#0d1117"
    plot: str = "#0d1117"
    color: str = "#c9d1d9"
    grid: str = "#30363d"
    line: str = "#30363d"
    zero_line: str = "#005cc5"
    ticks: str = "#c9d1d9"
    font: str = "#c9d1d9"

DevOpsDarkFont

Bases: FontAPI

GitHub dark font inspired theme for SpectraFit.

Please check, primer/github-vscode-theme

Source code in spectrafit/plugins/color_schemas.py
Python
class DevOpsDarkFont(FontAPI):
    """GitHub dark font inspired theme for SpectraFit.

    Please check, https://github.com/primer/github-vscode-theme
    """

    family: str = __fira_code__
    size: int = 12
    color: str = "#c9d1d9"

DevOpsLightColor

Bases: ColorAPI

GitHub light color inspired theme for SpectraFit.

Please check, primer/github-vscode-theme

Source code in spectrafit/plugins/color_schemas.py
Python
class DevOpsLightColor(ColorAPI):
    """GitHub light color inspired theme for SpectraFit.

    Please check, https://github.com/primer/github-vscode-theme
    """

    intensity: str = "#1e4f8a"
    residual: str = "#d73a49"
    fit: str = "#d73a49"
    bars: List[str] = ["#005cc5", "#6f42c1", "#d73a49", "#22863a", "#d73a49"]
    lines: List[str] = ["#d73a49", "#22863a", "#d73a49", "#005cc5", "#6f42c1"]
    components: str = "#22863a"
    paper: str = "#ffffff"
    plot: str = "#ffffff"
    color: str = "#000000"
    grid: str = "#d9d9d9"
    line: str = "#d9d9d9"
    zero_line: str = "#005cc5"
    ticks: str = "#000000"
    font: str = "#000000"

DevOpsLightFont

Bases: FontAPI

GitHub light font inspired theme for SpectraFit.

Please check, primer/github-vscode-theme

Source code in spectrafit/plugins/color_schemas.py
Python
class DevOpsLightFont(FontAPI):
    """GitHub light font inspired theme for SpectraFit.

    Please check, https://github.com/primer/github-vscode-theme
    """

    family: str = __fira_code__
    size: int = 12
    color: str = "#000000"

DraculaColor

Bases: ColorAPI

Dracula color theme for SpectraFit.

Dracula Color

The Dracula Color is a color theme is used for the dark mode of the SpectraFit application. This color theme is used in the following way:

  • Background #282a36 → paper, plot
  • Current Line #44475a → not used
  • Foreground #f8f8f2 → color, grid, ticks, font
  • Comment #6272a4 → line
  • Cyan #8be9fd → zero_line
  • Green #50fa7b → fit
  • Orange #ffb86c → not used
  • Pink #ff79c6 → components
  • Purple #bd93f9 → intensity
  • Red #ff5555 → residual
  • Yellow #f1fa8c → not used
Source code in spectrafit/plugins/color_schemas.py
Python
class DraculaColor(ColorAPI):
    """Dracula color theme for SpectraFit.

    !!! info "Dracula Color"

        The [Dracula Color](https://draculatheme.com/contribute) is a color theme is
        used for the dark mode of the `SpectraFit` application. This color theme is
        used in the following way:

        * Background    #282a36 &rarr; **paper**, **plot**
        * Current Line	#44475a &rarr; _not used_
        * Foreground	#f8f8f2 &rarr; **color**, **grid**, **ticks**,  **font**
        * Comment	#6272a4 &rarr; **line**
        * Cyan	#8be9fd &rarr; **zero_line**
        * Green	#50fa7b &rarr; **fit**
        * Orange	#ffb86c &rarr; _not used_
        * Pink	#ff79c6 &rarr; **components**
        * Purple	#bd93f9 &rarr; **intensity**
        * Red	#ff5555 &rarr; **residual**
        * Yellow	#f1fa8c &rarr; _not used_

    """

    intensity: str = "#bd93f9"
    residual: str = "#ff5555"
    fit: str = "#50fa7b"
    bars: List[str] = ["#803C62", "#FFC4E6", "#FF79C6", "#806273", "#CC609D"]
    lines: List[str] = ["#805C36", "#FFDCB8", "#FFB86C", "#806E5C", "#CC9356"]
    components: str = "#ff79c6"
    paper: str = "#282a36"
    plot: str = "#282a36"
    color: str = "#f8f8f2"
    grid: str = "#f8f8f2"
    line: str = "#6272a4"
    zero_line: str = "#8be9fd"
    ticks: str = "#f8f8f2"
    font: str = "#f8f8f2"

DraculaFont

Bases: FontAPI

Dracula font theme for SpectraFit.

Dracula Font

The Dracula Font is a font theme is used for the dark mode of the SpectraFit application. This font theme is used in the following way:

  • Font Family "Fira Code" → family
  • Font Size 12 → size
  • Font Color dracula white → color

See also: tonsky/FiraCode

Source code in spectrafit/plugins/color_schemas.py
Python
class DraculaFont(FontAPI):
    """Dracula font theme for SpectraFit.

    !!! info "Dracula Font"

        The [Dracula Font](https://draculatheme.com/contribute) is a font theme is
        used for the dark mode of the `SpectraFit` application. This font theme is
        used in the following way:

        * Font Family	"Fira Code" &rarr; **family**
        * Font Size	12 &rarr; **size**
        * Font Color dracula white &rarr; **color**

        See also: https://github.com/tonsky/FiraCode
    """

    family: str = __fira_code__
    size: int = 12
    color: str = "#f8f8f2"

MoonAkiColor

Bases: ColorAPI

MoonAki dark color theme for SpectraFit.

Source code in spectrafit/plugins/color_schemas.py
Python
class MoonAkiColor(ColorAPI):
    """MoonAki dark color theme for SpectraFit."""

    intensity: str = "#f92672"
    residual: str = "#fd971f"
    fit: str = "#a6e22e"
    bars: List[str] = ["#66d9ef", "#ae81ff", "#f92672", "#a6e22e", "#fd971f"]
    lines: List[str] = ["#f92672", "#a6e22e", "#fd971f", "#66d9ef", "#ae81ff"]
    components: str = "#ae81ff"
    paper: str = "#272822"
    plot: str = "#272822"
    color: str = "#f8f8f2"
    grid: str = "#49483e"
    line: str = "#49483e"
    zero_line: str = "#66d9ef"
    ticks: str = "#f8f8f2"
    font: str = "#f8f8f2"

MoonAkiFont

Bases: FontAPI

MoonAki dark font theme for SpectraFit.

Source code in spectrafit/plugins/color_schemas.py
Python
class MoonAkiFont(FontAPI):
    """MoonAki dark font theme for SpectraFit."""

    family: str = "Monaco"
    size: int = 12
    color: str = "#f8f8f2"

Running SpectraFit in the builtin Jupyter-Notebook

For running SpectraFit in the builtin Jupyter-Notebook, the following command can be used:

Bash
spectrafit-jupyter

And next, the SpectraFitNotebook class can be used for fitting the data:

Python
from spectrafit.plugins.notebook import SpectraFitNotebook